Cargando…
Influence of Capsaicin on Inflammatory Cytokines Induced by Lipopolysaccharide in Myoblast Cells Under In vitro Environment
BACKGROUND: ellular damage initiated by reactive oxygen species (ROS) is the main cause of numerous severe diseases and therefore for this reason, the natural antioxidants have note worthy significance in human health. Capsaicin possesses noteworthy analgesic and anti-inflammatory properties. It als...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407112/ https://www.ncbi.nlm.nih.gov/pubmed/28479722 http://dx.doi.org/10.4103/0973-1296.203984 |
Sumario: | BACKGROUND: ellular damage initiated by reactive oxygen species (ROS) is the main cause of numerous severe diseases and therefore for this reason, the natural antioxidants have note worthy significance in human health. Capsaicin possesses noteworthy analgesic and anti-inflammatory properties. It also possesses healing effects for treatment of arthritis, diabetic neuropathy, gastric lesions, and cardiac excitability that is why it is incorporated in creams and gels. OBJECTIVE: The present study was carried out to estimate the in vitro antioxidant and ROS scavenging activities of capsaicin against muscle precursor cells. Till date, no investigation has been carried out to study the effect of capsaicin on myoblasts. MATERIALS AND METHODS: Herein, the cytotoxicity was induced by endotoxin lipopolysaccharide (LPS) to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells. To find out the toxicity of endotoxin, myoblasts were exposed to different concentrations of LPS, viability and morphology was checkedby the means of CCK-8 test and microscopy, respectively. Apoptotic cell death was examined by fluorescence staining. Additionally, LPS-induced apoptosis was determined by mRNAexpression of calpain, caspase-3 and tumor necrosisfactor alpha (TNF-α), and were quantified by qRT-PCR. RESULTS: The outcome of the presentstudy demonstrated that LPS stimulation generatestoxicity in dose-dependent manner. Pre-treatmentof myoblasts with capsaicin can considerably alleviate LPS-induced inflammation. CONCLUSION: In conclusion, this study indicates that dietetic supplementation of capsicum may help to alleviate/reduce the inflammatory effects and is therefore potent source of natural antioxidant agent which can be utilized to control muscle related diseases, such as myotube atrophy. SUMMARY: In the present study cytotoxicity was induced by LPS to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells. The results of this investigation demonstrated that LPS stimulation generates toxicity in dose dependent manner. Pre-treatment of myoblasts with capsaicin can considerably reduce LPS induced inflammation. It has been concluded on the basis of results that the dietetic supplementation of capsicum may help to minimize inflammatory effects and are potent sources of natural antioxidants which can be utilized to control muscle related diseases such as atrophy. Abbreviation used: AMP: Adenosine monophosphate, AO/EB: Acridine orange / Ethidium bromide, ATL: T-cell leukemi, CAP: Capsaicin, CCK-8: Cell counting Kit-8, CLSM: Laser Scanning Microscopy, DCF-DA: 2’, 7’-dichlorofluorescein diacetate, DMEM: Dulbecco’s modified Eagle’s medium, DPPH: α, α-diphenyl-β-picrylhydrazyl, FBS: Fetal bovine serum, KA: Kainic acid, LPS: Lipopolysaccharide, MDA: Malondialdehyde, NF-κB: Nuclear factor kgene binding, PBS: Phosphate buffer saline, pNA: p-nitroanilide, RNW: RNase free water, ROS: Reactive oxygen species, TNF-α: Tumor necrosis factor alpha, TRPV1: Transient receptor potential vanilloid 1 |
---|