Cargando…

Simultaneous tracking of spin angle and amplitude beyond classical limits

Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g....

Descripción completa

Detalles Bibliográficos
Autores principales: Colangelo, Giorgio, Ciurana, Ferran Martin, Bianchet, Lorena C., Sewell, Robert J., Mitchell, Morgan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407441/
https://www.ncbi.nlm.nih.gov/pubmed/28332519
http://dx.doi.org/10.1038/nature21434
_version_ 1783232137294512128
author Colangelo, Giorgio
Ciurana, Ferran Martin
Bianchet, Lorena C.
Sewell, Robert J.
Mitchell, Morgan W.
author_facet Colangelo, Giorgio
Ciurana, Ferran Martin
Bianchet, Lorena C.
Sewell, Robert J.
Mitchell, Morgan W.
author_sort Colangelo, Giorgio
collection PubMed
description Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g., inferred from spin projectors F(α) at different times. Such projectors do not commute, and thus quantum measurement back-action (QMBA) necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show how to reduce this disturbance below [Formula: see text] the classical limit for N spins, by directing the QMBA almost entirely into an unmeasured spin component. This generates a planar squeezed state8 which, because spins obey non-Heisenberg uncertainty relations,9,10 allows simultaneous precise knowledge of spin angle and amplitude. We use high-dynamic-range optical quantum non-demolition measurements11–13 applied to a precessing magnetic spin ensemble, to demonstrate spin tracking with steady-state angular sensitivity 2.9 dB beyond the standard quantum limit, simultaneous with amplitude sensitivity 7.0 dB beyond Poisson statistics.14 This method for the first time surpasses classical limits in non-commuting observables, and enables orders-of-magnitude sensitivity boosts for state-of-the-art sensing15–18 and spectroscopy.19,20
format Online
Article
Text
id pubmed-5407441
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-54074412017-09-22 Simultaneous tracking of spin angle and amplitude beyond classical limits Colangelo, Giorgio Ciurana, Ferran Martin Bianchet, Lorena C. Sewell, Robert J. Mitchell, Morgan W. Nature Article Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g., inferred from spin projectors F(α) at different times. Such projectors do not commute, and thus quantum measurement back-action (QMBA) necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show how to reduce this disturbance below [Formula: see text] the classical limit for N spins, by directing the QMBA almost entirely into an unmeasured spin component. This generates a planar squeezed state8 which, because spins obey non-Heisenberg uncertainty relations,9,10 allows simultaneous precise knowledge of spin angle and amplitude. We use high-dynamic-range optical quantum non-demolition measurements11–13 applied to a precessing magnetic spin ensemble, to demonstrate spin tracking with steady-state angular sensitivity 2.9 dB beyond the standard quantum limit, simultaneous with amplitude sensitivity 7.0 dB beyond Poisson statistics.14 This method for the first time surpasses classical limits in non-commuting observables, and enables orders-of-magnitude sensitivity boosts for state-of-the-art sensing15–18 and spectroscopy.19,20 2017-03-22 /pmc/articles/PMC5407441/ /pubmed/28332519 http://dx.doi.org/10.1038/nature21434 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Colangelo, Giorgio
Ciurana, Ferran Martin
Bianchet, Lorena C.
Sewell, Robert J.
Mitchell, Morgan W.
Simultaneous tracking of spin angle and amplitude beyond classical limits
title Simultaneous tracking of spin angle and amplitude beyond classical limits
title_full Simultaneous tracking of spin angle and amplitude beyond classical limits
title_fullStr Simultaneous tracking of spin angle and amplitude beyond classical limits
title_full_unstemmed Simultaneous tracking of spin angle and amplitude beyond classical limits
title_short Simultaneous tracking of spin angle and amplitude beyond classical limits
title_sort simultaneous tracking of spin angle and amplitude beyond classical limits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407441/
https://www.ncbi.nlm.nih.gov/pubmed/28332519
http://dx.doi.org/10.1038/nature21434
work_keys_str_mv AT colangelogiorgio simultaneoustrackingofspinangleandamplitudebeyondclassicallimits
AT ciuranaferranmartin simultaneoustrackingofspinangleandamplitudebeyondclassicallimits
AT bianchetlorenac simultaneoustrackingofspinangleandamplitudebeyondclassicallimits
AT sewellrobertj simultaneoustrackingofspinangleandamplitudebeyondclassicallimits
AT mitchellmorganw simultaneoustrackingofspinangleandamplitudebeyondclassicallimits