Cargando…
Simultaneous tracking of spin angle and amplitude beyond classical limits
Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407441/ https://www.ncbi.nlm.nih.gov/pubmed/28332519 http://dx.doi.org/10.1038/nature21434 |
_version_ | 1783232137294512128 |
---|---|
author | Colangelo, Giorgio Ciurana, Ferran Martin Bianchet, Lorena C. Sewell, Robert J. Mitchell, Morgan W. |
author_facet | Colangelo, Giorgio Ciurana, Ferran Martin Bianchet, Lorena C. Sewell, Robert J. Mitchell, Morgan W. |
author_sort | Colangelo, Giorgio |
collection | PubMed |
description | Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g., inferred from spin projectors F(α) at different times. Such projectors do not commute, and thus quantum measurement back-action (QMBA) necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show how to reduce this disturbance below [Formula: see text] the classical limit for N spins, by directing the QMBA almost entirely into an unmeasured spin component. This generates a planar squeezed state8 which, because spins obey non-Heisenberg uncertainty relations,9,10 allows simultaneous precise knowledge of spin angle and amplitude. We use high-dynamic-range optical quantum non-demolition measurements11–13 applied to a precessing magnetic spin ensemble, to demonstrate spin tracking with steady-state angular sensitivity 2.9 dB beyond the standard quantum limit, simultaneous with amplitude sensitivity 7.0 dB beyond Poisson statistics.14 This method for the first time surpasses classical limits in non-commuting observables, and enables orders-of-magnitude sensitivity boosts for state-of-the-art sensing15–18 and spectroscopy.19,20 |
format | Online Article Text |
id | pubmed-5407441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-54074412017-09-22 Simultaneous tracking of spin angle and amplitude beyond classical limits Colangelo, Giorgio Ciurana, Ferran Martin Bianchet, Lorena C. Sewell, Robert J. Mitchell, Morgan W. Nature Article Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, e.g., inferred from spin projectors F(α) at different times. Such projectors do not commute, and thus quantum measurement back-action (QMBA) necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show how to reduce this disturbance below [Formula: see text] the classical limit for N spins, by directing the QMBA almost entirely into an unmeasured spin component. This generates a planar squeezed state8 which, because spins obey non-Heisenberg uncertainty relations,9,10 allows simultaneous precise knowledge of spin angle and amplitude. We use high-dynamic-range optical quantum non-demolition measurements11–13 applied to a precessing magnetic spin ensemble, to demonstrate spin tracking with steady-state angular sensitivity 2.9 dB beyond the standard quantum limit, simultaneous with amplitude sensitivity 7.0 dB beyond Poisson statistics.14 This method for the first time surpasses classical limits in non-commuting observables, and enables orders-of-magnitude sensitivity boosts for state-of-the-art sensing15–18 and spectroscopy.19,20 2017-03-22 /pmc/articles/PMC5407441/ /pubmed/28332519 http://dx.doi.org/10.1038/nature21434 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Colangelo, Giorgio Ciurana, Ferran Martin Bianchet, Lorena C. Sewell, Robert J. Mitchell, Morgan W. Simultaneous tracking of spin angle and amplitude beyond classical limits |
title | Simultaneous tracking of spin angle and amplitude beyond classical limits |
title_full | Simultaneous tracking of spin angle and amplitude beyond classical limits |
title_fullStr | Simultaneous tracking of spin angle and amplitude beyond classical limits |
title_full_unstemmed | Simultaneous tracking of spin angle and amplitude beyond classical limits |
title_short | Simultaneous tracking of spin angle and amplitude beyond classical limits |
title_sort | simultaneous tracking of spin angle and amplitude beyond classical limits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407441/ https://www.ncbi.nlm.nih.gov/pubmed/28332519 http://dx.doi.org/10.1038/nature21434 |
work_keys_str_mv | AT colangelogiorgio simultaneoustrackingofspinangleandamplitudebeyondclassicallimits AT ciuranaferranmartin simultaneoustrackingofspinangleandamplitudebeyondclassicallimits AT bianchetlorenac simultaneoustrackingofspinangleandamplitudebeyondclassicallimits AT sewellrobertj simultaneoustrackingofspinangleandamplitudebeyondclassicallimits AT mitchellmorganw simultaneoustrackingofspinangleandamplitudebeyondclassicallimits |