Cargando…
A map of abstract relational knowledge in the human hippocampal–entorhinal cortex
The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407855/ https://www.ncbi.nlm.nih.gov/pubmed/28448253 http://dx.doi.org/10.7554/eLife.17086 |
_version_ | 1783232198349946880 |
---|---|
author | Garvert, Mona M Dolan, Raymond J Behrens, Timothy EJ |
author_facet | Garvert, Mona M Dolan, Raymond J Behrens, Timothy EJ |
author_sort | Garvert, Mona M |
collection | PubMed |
description | The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 |
format | Online Article Text |
id | pubmed-5407855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-54078552017-05-01 A map of abstract relational knowledge in the human hippocampal–entorhinal cortex Garvert, Mona M Dolan, Raymond J Behrens, Timothy EJ eLife Neuroscience The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns. DOI: http://dx.doi.org/10.7554/eLife.17086.001 eLife Sciences Publications, Ltd 2017-04-27 /pmc/articles/PMC5407855/ /pubmed/28448253 http://dx.doi.org/10.7554/eLife.17086 Text en © 2017, Garvert et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Garvert, Mona M Dolan, Raymond J Behrens, Timothy EJ A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title | A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title_full | A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title_fullStr | A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title_full_unstemmed | A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title_short | A map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
title_sort | map of abstract relational knowledge in the human hippocampal–entorhinal cortex |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407855/ https://www.ncbi.nlm.nih.gov/pubmed/28448253 http://dx.doi.org/10.7554/eLife.17086 |
work_keys_str_mv | AT garvertmonam amapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex AT dolanraymondj amapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex AT behrenstimothyej amapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex AT garvertmonam mapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex AT dolanraymondj mapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex AT behrenstimothyej mapofabstractrelationalknowledgeinthehumanhippocampalentorhinalcortex |