Cargando…
A modified subgradient extragradient method for solving monotone variational inequalities
In the setting of Hilbert space, a modified subgradient extragradient method is proposed for solving Lipschitz-continuous and monotone variational inequalities defined on a level set of a convex function. Our iterative process is relaxed and self-adaptive, that is, in each iteration, calculating two...
Autores principales: | He, Songnian, Wu, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408075/ https://www.ncbi.nlm.nih.gov/pubmed/28515617 http://dx.doi.org/10.1186/s13660-017-1366-3 |
Ejemplares similares
-
Extragradient subgradient methods for solving bilevel equilibrium problems
por: Yuying, Tadchai, et al.
Publicado: (2018) -
On the Weak Convergence of the Extragradient Method for Solving Pseudo-Monotone Variational Inequalities
por: Vuong, Phan Tu
Publicado: (2018) -
Self-adaptive iterative method for solving boundedly Lipschitz continuous and strongly monotone variational inequalities
por: He, Songnian, et al.
Publicado: (2018) -
Subgradient ellipsoid method for nonsmooth convex problems
por: Rodomanov, Anton, et al.
Publicado: (2022) -
Bounded perturbation resilience of extragradient-type methods and their applications
por: Dong, Q-L, et al.
Publicado: (2017)