Cargando…
The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling
Drought stress from soil or air limits plant growth and development, leading to a reduction in crop productivity. Several E3 ligases positively or negatively regulate the drought stress response. In the present study, we show that the pepper (Capsicum annuum) Drought Induced RING type E3 ligase 1, C...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408085/ https://www.ncbi.nlm.nih.gov/pubmed/28503186 http://dx.doi.org/10.3389/fpls.2017.00690 |
_version_ | 1783232229882724352 |
---|---|
author | Joo, Hyunhee Lim, Chae Woo Han, Sang-Wook Lee, Sung Chul |
author_facet | Joo, Hyunhee Lim, Chae Woo Han, Sang-Wook Lee, Sung Chul |
author_sort | Joo, Hyunhee |
collection | PubMed |
description | Drought stress from soil or air limits plant growth and development, leading to a reduction in crop productivity. Several E3 ligases positively or negatively regulate the drought stress response. In the present study, we show that the pepper (Capsicum annuum) Drought Induced RING type E3 ligase 1, CaDIR1, regulates the drought stress response via abscisic acid (ABA)-mediated signaling. CaDIR1 contains a C3HC4-type RING finger domain in the N-terminal region; this domain functions during protein degradation via attachment of ubiquitins to the substrate target proteins. The expression levels of the CaDIR1 gene were suppressed and induced by ABA and drought treatments, respectively. We conducted loss-of-function and gain-of function genetic studies to examine the in vivo function of CaDIR1 in response to ABA and drought stress. CaDIR1-silenced pepper plants displayed a drought-tolerant phenotype characterized by a low level of transpirational water loss via increased stomatal closure and elevated leaf temperatures. CaDIR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germination stage, but an ABA-hyposensitive phenotype—characterized by decreased stomatal closure and reduced leaf temperatures—at the adult stage. Moreover, adult CaDIR1-OX plants exhibited a drought-sensitive phenotype characterized by high levels of transpirational water loss. Our results indicate that CaDIR1 functions as a negative regulator of the drought stress response via ABA-mediated signaling. Our findings provide a valuable insight into the plant defense mechanism that operates during drought stress. |
format | Online Article Text |
id | pubmed-5408085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54080852017-05-12 The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling Joo, Hyunhee Lim, Chae Woo Han, Sang-Wook Lee, Sung Chul Front Plant Sci Plant Science Drought stress from soil or air limits plant growth and development, leading to a reduction in crop productivity. Several E3 ligases positively or negatively regulate the drought stress response. In the present study, we show that the pepper (Capsicum annuum) Drought Induced RING type E3 ligase 1, CaDIR1, regulates the drought stress response via abscisic acid (ABA)-mediated signaling. CaDIR1 contains a C3HC4-type RING finger domain in the N-terminal region; this domain functions during protein degradation via attachment of ubiquitins to the substrate target proteins. The expression levels of the CaDIR1 gene were suppressed and induced by ABA and drought treatments, respectively. We conducted loss-of-function and gain-of function genetic studies to examine the in vivo function of CaDIR1 in response to ABA and drought stress. CaDIR1-silenced pepper plants displayed a drought-tolerant phenotype characterized by a low level of transpirational water loss via increased stomatal closure and elevated leaf temperatures. CaDIR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germination stage, but an ABA-hyposensitive phenotype—characterized by decreased stomatal closure and reduced leaf temperatures—at the adult stage. Moreover, adult CaDIR1-OX plants exhibited a drought-sensitive phenotype characterized by high levels of transpirational water loss. Our results indicate that CaDIR1 functions as a negative regulator of the drought stress response via ABA-mediated signaling. Our findings provide a valuable insight into the plant defense mechanism that operates during drought stress. Frontiers Media S.A. 2017-04-28 /pmc/articles/PMC5408085/ /pubmed/28503186 http://dx.doi.org/10.3389/fpls.2017.00690 Text en Copyright © 2017 Joo, Lim, Han and Lee. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Joo, Hyunhee Lim, Chae Woo Han, Sang-Wook Lee, Sung Chul The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title | The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title_full | The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title_fullStr | The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title_full_unstemmed | The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title_short | The Pepper RING Finger E3 Ligase, CaDIR1, Regulates the Drought Stress Response via ABA-Mediated Signaling |
title_sort | pepper ring finger e3 ligase, cadir1, regulates the drought stress response via aba-mediated signaling |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408085/ https://www.ncbi.nlm.nih.gov/pubmed/28503186 http://dx.doi.org/10.3389/fpls.2017.00690 |
work_keys_str_mv | AT joohyunhee thepepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT limchaewoo thepepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT hansangwook thepepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT leesungchul thepepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT joohyunhee pepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT limchaewoo pepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT hansangwook pepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling AT leesungchul pepperringfingere3ligasecadir1regulatesthedroughtstressresponseviaabamediatedsignaling |