Cargando…

1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify no...

Descripción completa

Detalles Bibliográficos
Autores principales: Gorski, Mathias, van der Most, Peter J., Teumer, Alexander, Chu, Audrey Y., Li, Man, Mijatovic, Vladan, Nolte, Ilja M., Cocca, Massimiliano, Taliun, Daniel, Gomez, Felicia, Li, Yong, Tayo, Bamidele, Tin, Adrienne, Feitosa, Mary F., Aspelund, Thor, Attia, John, Biffar, Reiner, Bochud, Murielle, Boerwinkle, Eric, Borecki, Ingrid, Bottinger, Erwin P., Chen, Ming-Huei, Chouraki, Vincent, Ciullo, Marina, Coresh, Josef, Cornelis, Marilyn C., Curhan, Gary C., d’Adamo, Adamo Pio, Dehghan, Abbas, Dengler, Laura, Ding, Jingzhong, Eiriksdottir, Gudny, Endlich, Karlhans, Enroth, Stefan, Esko, Tõnu, Franco, Oscar H., Gasparini, Paolo, Gieger, Christian, Girotto, Giorgia, Gottesman, Omri, Gudnason, Vilmundur, Gyllensten, Ulf, Hancock, Stephen J., Harris, Tamara B., Helmer, Catherine, Höllerer, Simon, Hofer, Edith, Hofman, Albert, Holliday, Elizabeth G., Homuth, Georg, Hu, Frank B., Huth, Cornelia, Hutri-Kähönen, Nina, Hwang, Shih-Jen, Imboden, Medea, Johansson, Åsa, Kähönen, Mika, König, Wolfgang, Kramer, Holly, Krämer, Bernhard K., Kumar, Ashish, Kutalik, Zoltan, Lambert, Jean-Charles, Launer, Lenore J., Lehtimäki, Terho, de Borst, Martin, Navis, Gerjan, Swertz, Morris, Liu, Yongmei, Lohman, Kurt, Loos, Ruth J. F., Lu, Yingchang, Lyytikäinen, Leo-Pekka, McEvoy, Mark A., Meisinger, Christa, Meitinger, Thomas, Metspalu, Andres, Metzger, Marie, Mihailov, Evelin, Mitchell, Paul, Nauck, Matthias, Oldehinkel, Albertine J., Olden, Matthias, WJH Penninx, Brenda, Pistis, Giorgio, Pramstaller, Peter P., Probst-Hensch, Nicole, Raitakari, Olli T., Rettig, Rainer, Ridker, Paul M., Rivadeneira, Fernando, Robino, Antonietta, Rosas, Sylvia E., Ruderfer, Douglas, Ruggiero, Daniela, Saba, Yasaman, Sala, Cinzia, Schmidt, Helena, Schmidt, Reinhold, Scott, Rodney J., Sedaghat, Sanaz, Smith, Albert V., Sorice, Rossella, Stengel, Benedicte, Stracke, Sylvia, Strauch, Konstantin, Toniolo, Daniela, Uitterlinden, Andre G., Ulivi, Sheila, Viikari, Jorma S., Völker, Uwe, Vollenweider, Peter, Völzke, Henry, Vuckovic, Dragana, Waldenberger, Melanie, Jin Wang, Jie, Yang, Qiong, Chasman, Daniel I., Tromp, Gerard, Snieder, Harold, Heid, Iris M., Fox, Caroline S., Köttgen, Anna, Pattaro, Cristian, Böger, Carsten A., Fuchsberger, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408227/
https://www.ncbi.nlm.nih.gov/pubmed/28452372
http://dx.doi.org/10.1038/srep45040
_version_ 1783232265056157696
author Gorski, Mathias
van der Most, Peter J.
Teumer, Alexander
Chu, Audrey Y.
Li, Man
Mijatovic, Vladan
Nolte, Ilja M.
Cocca, Massimiliano
Taliun, Daniel
Gomez, Felicia
Li, Yong
Tayo, Bamidele
Tin, Adrienne
Feitosa, Mary F.
Aspelund, Thor
Attia, John
Biffar, Reiner
Bochud, Murielle
Boerwinkle, Eric
Borecki, Ingrid
Bottinger, Erwin P.
Chen, Ming-Huei
Chouraki, Vincent
Ciullo, Marina
Coresh, Josef
Cornelis, Marilyn C.
Curhan, Gary C.
d’Adamo, Adamo Pio
Dehghan, Abbas
Dengler, Laura
Ding, Jingzhong
Eiriksdottir, Gudny
Endlich, Karlhans
Enroth, Stefan
Esko, Tõnu
Franco, Oscar H.
Gasparini, Paolo
Gieger, Christian
Girotto, Giorgia
Gottesman, Omri
Gudnason, Vilmundur
Gyllensten, Ulf
Hancock, Stephen J.
Harris, Tamara B.
Helmer, Catherine
Höllerer, Simon
Hofer, Edith
Hofman, Albert
Holliday, Elizabeth G.
Homuth, Georg
Hu, Frank B.
Huth, Cornelia
Hutri-Kähönen, Nina
Hwang, Shih-Jen
Imboden, Medea
Johansson, Åsa
Kähönen, Mika
König, Wolfgang
Kramer, Holly
Krämer, Bernhard K.
Kumar, Ashish
Kutalik, Zoltan
Lambert, Jean-Charles
Launer, Lenore J.
Lehtimäki, Terho
de Borst, Martin
Navis, Gerjan
Swertz, Morris
Liu, Yongmei
Lohman, Kurt
Loos, Ruth J. F.
Lu, Yingchang
Lyytikäinen, Leo-Pekka
McEvoy, Mark A.
Meisinger, Christa
Meitinger, Thomas
Metspalu, Andres
Metzger, Marie
Mihailov, Evelin
Mitchell, Paul
Nauck, Matthias
Oldehinkel, Albertine J.
Olden, Matthias
WJH Penninx, Brenda
Pistis, Giorgio
Pramstaller, Peter P.
Probst-Hensch, Nicole
Raitakari, Olli T.
Rettig, Rainer
Ridker, Paul M.
Rivadeneira, Fernando
Robino, Antonietta
Rosas, Sylvia E.
Ruderfer, Douglas
Ruggiero, Daniela
Saba, Yasaman
Sala, Cinzia
Schmidt, Helena
Schmidt, Reinhold
Scott, Rodney J.
Sedaghat, Sanaz
Smith, Albert V.
Sorice, Rossella
Stengel, Benedicte
Stracke, Sylvia
Strauch, Konstantin
Toniolo, Daniela
Uitterlinden, Andre G.
Ulivi, Sheila
Viikari, Jorma S.
Völker, Uwe
Vollenweider, Peter
Völzke, Henry
Vuckovic, Dragana
Waldenberger, Melanie
Jin Wang, Jie
Yang, Qiong
Chasman, Daniel I.
Tromp, Gerard
Snieder, Harold
Heid, Iris M.
Fox, Caroline S.
Köttgen, Anna
Pattaro, Cristian
Böger, Carsten A.
Fuchsberger, Christian
author_facet Gorski, Mathias
van der Most, Peter J.
Teumer, Alexander
Chu, Audrey Y.
Li, Man
Mijatovic, Vladan
Nolte, Ilja M.
Cocca, Massimiliano
Taliun, Daniel
Gomez, Felicia
Li, Yong
Tayo, Bamidele
Tin, Adrienne
Feitosa, Mary F.
Aspelund, Thor
Attia, John
Biffar, Reiner
Bochud, Murielle
Boerwinkle, Eric
Borecki, Ingrid
Bottinger, Erwin P.
Chen, Ming-Huei
Chouraki, Vincent
Ciullo, Marina
Coresh, Josef
Cornelis, Marilyn C.
Curhan, Gary C.
d’Adamo, Adamo Pio
Dehghan, Abbas
Dengler, Laura
Ding, Jingzhong
Eiriksdottir, Gudny
Endlich, Karlhans
Enroth, Stefan
Esko, Tõnu
Franco, Oscar H.
Gasparini, Paolo
Gieger, Christian
Girotto, Giorgia
Gottesman, Omri
Gudnason, Vilmundur
Gyllensten, Ulf
Hancock, Stephen J.
Harris, Tamara B.
Helmer, Catherine
Höllerer, Simon
Hofer, Edith
Hofman, Albert
Holliday, Elizabeth G.
Homuth, Georg
Hu, Frank B.
Huth, Cornelia
Hutri-Kähönen, Nina
Hwang, Shih-Jen
Imboden, Medea
Johansson, Åsa
Kähönen, Mika
König, Wolfgang
Kramer, Holly
Krämer, Bernhard K.
Kumar, Ashish
Kutalik, Zoltan
Lambert, Jean-Charles
Launer, Lenore J.
Lehtimäki, Terho
de Borst, Martin
Navis, Gerjan
Swertz, Morris
Liu, Yongmei
Lohman, Kurt
Loos, Ruth J. F.
Lu, Yingchang
Lyytikäinen, Leo-Pekka
McEvoy, Mark A.
Meisinger, Christa
Meitinger, Thomas
Metspalu, Andres
Metzger, Marie
Mihailov, Evelin
Mitchell, Paul
Nauck, Matthias
Oldehinkel, Albertine J.
Olden, Matthias
WJH Penninx, Brenda
Pistis, Giorgio
Pramstaller, Peter P.
Probst-Hensch, Nicole
Raitakari, Olli T.
Rettig, Rainer
Ridker, Paul M.
Rivadeneira, Fernando
Robino, Antonietta
Rosas, Sylvia E.
Ruderfer, Douglas
Ruggiero, Daniela
Saba, Yasaman
Sala, Cinzia
Schmidt, Helena
Schmidt, Reinhold
Scott, Rodney J.
Sedaghat, Sanaz
Smith, Albert V.
Sorice, Rossella
Stengel, Benedicte
Stracke, Sylvia
Strauch, Konstantin
Toniolo, Daniela
Uitterlinden, Andre G.
Ulivi, Sheila
Viikari, Jorma S.
Völker, Uwe
Vollenweider, Peter
Völzke, Henry
Vuckovic, Dragana
Waldenberger, Melanie
Jin Wang, Jie
Yang, Qiong
Chasman, Daniel I.
Tromp, Gerard
Snieder, Harold
Heid, Iris M.
Fox, Caroline S.
Köttgen, Anna
Pattaro, Cristian
Böger, Carsten A.
Fuchsberger, Christian
author_sort Gorski, Mathias
collection PubMed
description HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(−8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
format Online
Article
Text
id pubmed-5408227
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54082272017-05-02 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function Gorski, Mathias van der Most, Peter J. Teumer, Alexander Chu, Audrey Y. Li, Man Mijatovic, Vladan Nolte, Ilja M. Cocca, Massimiliano Taliun, Daniel Gomez, Felicia Li, Yong Tayo, Bamidele Tin, Adrienne Feitosa, Mary F. Aspelund, Thor Attia, John Biffar, Reiner Bochud, Murielle Boerwinkle, Eric Borecki, Ingrid Bottinger, Erwin P. Chen, Ming-Huei Chouraki, Vincent Ciullo, Marina Coresh, Josef Cornelis, Marilyn C. Curhan, Gary C. d’Adamo, Adamo Pio Dehghan, Abbas Dengler, Laura Ding, Jingzhong Eiriksdottir, Gudny Endlich, Karlhans Enroth, Stefan Esko, Tõnu Franco, Oscar H. Gasparini, Paolo Gieger, Christian Girotto, Giorgia Gottesman, Omri Gudnason, Vilmundur Gyllensten, Ulf Hancock, Stephen J. Harris, Tamara B. Helmer, Catherine Höllerer, Simon Hofer, Edith Hofman, Albert Holliday, Elizabeth G. Homuth, Georg Hu, Frank B. Huth, Cornelia Hutri-Kähönen, Nina Hwang, Shih-Jen Imboden, Medea Johansson, Åsa Kähönen, Mika König, Wolfgang Kramer, Holly Krämer, Bernhard K. Kumar, Ashish Kutalik, Zoltan Lambert, Jean-Charles Launer, Lenore J. Lehtimäki, Terho de Borst, Martin Navis, Gerjan Swertz, Morris Liu, Yongmei Lohman, Kurt Loos, Ruth J. F. Lu, Yingchang Lyytikäinen, Leo-Pekka McEvoy, Mark A. Meisinger, Christa Meitinger, Thomas Metspalu, Andres Metzger, Marie Mihailov, Evelin Mitchell, Paul Nauck, Matthias Oldehinkel, Albertine J. Olden, Matthias WJH Penninx, Brenda Pistis, Giorgio Pramstaller, Peter P. Probst-Hensch, Nicole Raitakari, Olli T. Rettig, Rainer Ridker, Paul M. Rivadeneira, Fernando Robino, Antonietta Rosas, Sylvia E. Ruderfer, Douglas Ruggiero, Daniela Saba, Yasaman Sala, Cinzia Schmidt, Helena Schmidt, Reinhold Scott, Rodney J. Sedaghat, Sanaz Smith, Albert V. Sorice, Rossella Stengel, Benedicte Stracke, Sylvia Strauch, Konstantin Toniolo, Daniela Uitterlinden, Andre G. Ulivi, Sheila Viikari, Jorma S. Völker, Uwe Vollenweider, Peter Völzke, Henry Vuckovic, Dragana Waldenberger, Melanie Jin Wang, Jie Yang, Qiong Chasman, Daniel I. Tromp, Gerard Snieder, Harold Heid, Iris M. Fox, Caroline S. Köttgen, Anna Pattaro, Cristian Böger, Carsten A. Fuchsberger, Christian Sci Rep Article HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(−8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples. Nature Publishing Group 2017-04-28 /pmc/articles/PMC5408227/ /pubmed/28452372 http://dx.doi.org/10.1038/srep45040 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Gorski, Mathias
van der Most, Peter J.
Teumer, Alexander
Chu, Audrey Y.
Li, Man
Mijatovic, Vladan
Nolte, Ilja M.
Cocca, Massimiliano
Taliun, Daniel
Gomez, Felicia
Li, Yong
Tayo, Bamidele
Tin, Adrienne
Feitosa, Mary F.
Aspelund, Thor
Attia, John
Biffar, Reiner
Bochud, Murielle
Boerwinkle, Eric
Borecki, Ingrid
Bottinger, Erwin P.
Chen, Ming-Huei
Chouraki, Vincent
Ciullo, Marina
Coresh, Josef
Cornelis, Marilyn C.
Curhan, Gary C.
d’Adamo, Adamo Pio
Dehghan, Abbas
Dengler, Laura
Ding, Jingzhong
Eiriksdottir, Gudny
Endlich, Karlhans
Enroth, Stefan
Esko, Tõnu
Franco, Oscar H.
Gasparini, Paolo
Gieger, Christian
Girotto, Giorgia
Gottesman, Omri
Gudnason, Vilmundur
Gyllensten, Ulf
Hancock, Stephen J.
Harris, Tamara B.
Helmer, Catherine
Höllerer, Simon
Hofer, Edith
Hofman, Albert
Holliday, Elizabeth G.
Homuth, Georg
Hu, Frank B.
Huth, Cornelia
Hutri-Kähönen, Nina
Hwang, Shih-Jen
Imboden, Medea
Johansson, Åsa
Kähönen, Mika
König, Wolfgang
Kramer, Holly
Krämer, Bernhard K.
Kumar, Ashish
Kutalik, Zoltan
Lambert, Jean-Charles
Launer, Lenore J.
Lehtimäki, Terho
de Borst, Martin
Navis, Gerjan
Swertz, Morris
Liu, Yongmei
Lohman, Kurt
Loos, Ruth J. F.
Lu, Yingchang
Lyytikäinen, Leo-Pekka
McEvoy, Mark A.
Meisinger, Christa
Meitinger, Thomas
Metspalu, Andres
Metzger, Marie
Mihailov, Evelin
Mitchell, Paul
Nauck, Matthias
Oldehinkel, Albertine J.
Olden, Matthias
WJH Penninx, Brenda
Pistis, Giorgio
Pramstaller, Peter P.
Probst-Hensch, Nicole
Raitakari, Olli T.
Rettig, Rainer
Ridker, Paul M.
Rivadeneira, Fernando
Robino, Antonietta
Rosas, Sylvia E.
Ruderfer, Douglas
Ruggiero, Daniela
Saba, Yasaman
Sala, Cinzia
Schmidt, Helena
Schmidt, Reinhold
Scott, Rodney J.
Sedaghat, Sanaz
Smith, Albert V.
Sorice, Rossella
Stengel, Benedicte
Stracke, Sylvia
Strauch, Konstantin
Toniolo, Daniela
Uitterlinden, Andre G.
Ulivi, Sheila
Viikari, Jorma S.
Völker, Uwe
Vollenweider, Peter
Völzke, Henry
Vuckovic, Dragana
Waldenberger, Melanie
Jin Wang, Jie
Yang, Qiong
Chasman, Daniel I.
Tromp, Gerard
Snieder, Harold
Heid, Iris M.
Fox, Caroline S.
Köttgen, Anna
Pattaro, Cristian
Böger, Carsten A.
Fuchsberger, Christian
1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title_full 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title_fullStr 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title_full_unstemmed 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title_short 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function
title_sort 1000 genomes-based meta-analysis identifies 10 novel loci for kidney function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408227/
https://www.ncbi.nlm.nih.gov/pubmed/28452372
http://dx.doi.org/10.1038/srep45040
work_keys_str_mv AT gorskimathias 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT vandermostpeterj 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT teumeralexander 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT chuaudreyy 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT liman 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT mijatovicvladan 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT nolteiljam 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT coccamassimiliano 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT taliundaniel 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT gomezfelicia 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT liyong 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT tayobamidele 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT tinadrienne 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT feitosamaryf 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT aspelundthor 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT attiajohn 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT biffarreiner 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT bochudmurielle 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT boerwinkleeric 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT boreckiingrid 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT bottingererwinp 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT chenminghuei 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT chourakivincent 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT ciullomarina 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT coreshjosef 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT cornelismarilync 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT curhangaryc 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT dadamoadamopio 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT dehghanabbas 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT denglerlaura 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT dingjingzhong 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT eiriksdottirgudny 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT endlichkarlhans 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT enrothstefan 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT eskotonu 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT francooscarh 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT gasparinipaolo 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT giegerchristian 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT girottogiorgia 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT gottesmanomri 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT gudnasonvilmundur 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT gyllenstenulf 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hancockstephenj 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT harristamarab 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT helmercatherine 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hollerersimon 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hoferedith 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hofmanalbert 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hollidayelizabethg 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT homuthgeorg 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hufrankb 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT huthcornelia 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hutrikahonennina 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT hwangshihjen 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT imbodenmedea 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT johanssonasa 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kahonenmika 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT konigwolfgang 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kramerholly 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kramerbernhardk 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kumarashish 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kutalikzoltan 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT lambertjeancharles 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT launerlenorej 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT lehtimakiterho 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT deborstmartin 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT navisgerjan 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT swertzmorris 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT liuyongmei 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT lohmankurt 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT loosruthjf 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT luyingchang 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT lyytikainenleopekka 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT mcevoymarka 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT meisingerchrista 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT meitingerthomas 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT metspaluandres 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT metzgermarie 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT mihailovevelin 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT mitchellpaul 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT nauckmatthias 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT oldehinkelalbertinej 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT oldenmatthias 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT wjhpenninxbrenda 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT pistisgiorgio 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT pramstallerpeterp 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT probsthenschnicole 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT raitakariollit 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT rettigrainer 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT ridkerpaulm 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT rivadeneirafernando 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT robinoantonietta 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT rosassylviae 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT ruderferdouglas 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT ruggierodaniela 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT sabayasaman 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT salacinzia 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT schmidthelena 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT schmidtreinhold 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT scottrodneyj 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT sedaghatsanaz 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT smithalbertv 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT soricerossella 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT stengelbenedicte 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT strackesylvia 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT strauchkonstantin 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT toniolodaniela 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT uitterlindenandreg 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT ulivisheila 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT viikarijormas 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT volkeruwe 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT vollenweiderpeter 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT volzkehenry 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT vuckovicdragana 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT waldenbergermelanie 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT jinwangjie 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT yangqiong 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT chasmandanieli 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT trompgerard 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT sniederharold 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT heidirism 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT foxcarolines 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT kottgenanna 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT pattarocristian 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT bogercarstena 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction
AT fuchsbergerchristian 1000genomesbasedmetaanalysisidentifies10novellociforkidneyfunction