Cargando…
Laucysteinamide A, a Hybrid PKS/NRPS Metabolite from a Saipan Cyanobacterium, cf. Caldora penicillata
A bioactivity guided study of a cf. Caldora penicillata species, collected during a 2013 expedition to the Pacific island of Saipan, Northern Mariana Islands (a commonwealth of the USA), led to the isolation of a new thiazoline-containing alkaloid, laucysteinamide A (1). Laucysteinamide A is a new m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408267/ https://www.ncbi.nlm.nih.gov/pubmed/28420100 http://dx.doi.org/10.3390/md15040121 |
Sumario: | A bioactivity guided study of a cf. Caldora penicillata species, collected during a 2013 expedition to the Pacific island of Saipan, Northern Mariana Islands (a commonwealth of the USA), led to the isolation of a new thiazoline-containing alkaloid, laucysteinamide A (1). Laucysteinamide A is a new monomeric analogue of the marine cyanobacterial metabolite, somocystinamide A (2), a disulfide-bonded dimeric compound that was isolated previously from a Fijian marine cyanobacterium. The structure and absolute configuration of laucysteinamide A (1) was determined by a detailed analysis of its NMR, MS, and CD spectra. In addition, the highly bioactive lipid, curacin D (3), was also found to be present in this cyanobacterial extract. The latter compound was responsible for the potent cytotoxicity of this extract to H-460 human non-small cell lung cancer cells in vitro. |
---|