Cargando…

Short‐term heat stress alters redox balance in porcine skeletal muscle

Heat stress contributes to higher morbidity and mortality in humans and animals and is an agricultural economic challenge because it reduces livestock productivity. Redox balance and associated mitochondrial responses appear to play a central role in heat stress‐induced skeletal muscle pathology. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Volodina, Olga, Ganesan, Shanthi, Pearce, Sarah C., Gabler, Nicholas K., Baumgard, Lance H., Rhoads, Robert P., Selsby, Joshua T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408292/
https://www.ncbi.nlm.nih.gov/pubmed/28455453
http://dx.doi.org/10.14814/phy2.13267
Descripción
Sumario:Heat stress contributes to higher morbidity and mortality in humans and animals and is an agricultural economic challenge because it reduces livestock productivity. Redox balance and associated mitochondrial responses appear to play a central role in heat stress‐induced skeletal muscle pathology. We have previously reported increased oxidative stress and mitochondrial content in oxidative muscle following 12 h of heat stress. The purposes of this investigation were to characterize heat stress‐induced oxidative stress and changes in mitochondrial content and biogenic signaling in oxidative skeletal muscle. Crossbred gilts were randomly assigned to either thermal neutral (21°C; n = 8, control group) or heat stress (37°C) conditions for 2 h (n = 8), 4 h (n = 8), or 6 h (n = 8). At the end, their respective environmental exposure, the red portion of the semitendinosus muscle (STR) was harvested. Heat stress increased concentration of malondialdehyde (MDA) following 2 and 4 h compared to thermal neutral and 6 h, which was similar to thermal neutral, and decreased linearly with time. Protein carbonyl content was not influenced by environment. Catalase activity was increased following 4 h of heat stress and superoxide dismutase activity was decreased following 6 h of heat stress compared to thermal neutral conditions. Heat stress‐mediated changes in antioxidant activity were independent of altered protein abundance or transcript expression. Mitochondrial content and mitochondrial biogenic signaling were similar between groups. These data demonstrate that heat stress caused a transient increase in oxidative stress that was countered by a compensatory change in catalase activity. These findings contribute to our growing understanding of the chronology of heat stress‐induced intracellular dysfunctions in skeletal muscle.