Cargando…
Accurate identification of single nucleotide variants in whole genome amplified single cells
Genome-wide, DNA mutation analysis in single cells is prone to artifacts associated with cell lysis and whole genome amplification. Here we addressed these issues by developing Single-Cell Multiple Displacement Amplification (SCMDA) and the single-cell variant caller, SCcaller. Validated by comparin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408311/ https://www.ncbi.nlm.nih.gov/pubmed/28319112 http://dx.doi.org/10.1038/nmeth.4227 |
Sumario: | Genome-wide, DNA mutation analysis in single cells is prone to artifacts associated with cell lysis and whole genome amplification. Here we addressed these issues by developing Single-Cell Multiple Displacement Amplification (SCMDA) and the single-cell variant caller, SCcaller. Validated by comparing SCMDA-amplified single cells with unamplified clones from the same population, the procedure provides a firm foundation for standardizing somatic mutation analysis in single-cell genomics. |
---|