Cargando…
Combining multiple tools outperforms individual methods in gene set enrichment analyses
MOTIVATION: Gene set enrichment (GSE) analysis allows researchers to efficiently extract biological insight from long lists of differentially expressed genes by interrogating them at a systems level. In recent years, there has been a proliferation of GSE analysis methods and hence it has become incr...
Autores principales: | Alhamdoosh, Monther, Ng, Milica, Wilson, Nicholas J, Sheridan, Julie M, Huynh, Huy, Wilson, Michael J, Ritchie, Matthew E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408797/ https://www.ncbi.nlm.nih.gov/pubmed/27694195 http://dx.doi.org/10.1093/bioinformatics/btw623 |
Ejemplares similares
-
Easy and efficient ensemble gene set testing with EGSEA
por: Alhamdoosh, Monther, et al.
Publicado: (2017) -
Machine learning applied to whole‐blood RNA‐sequencing data uncovers distinct subsets of patients with systemic lupus erythematosus
por: Figgett, William A, et al.
Publicado: (2019) -
Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses
por: Chung, Matthew, et al.
Publicado: (2018) -
Matrix metalloproteinase-7 is increased in lung bases but not apices in idiopathic pulmonary fibrosis
por: Jaffar, Jade, et al.
Publicado: (2022) -
A guide to creating design matrices for gene expression experiments
por: Law, Charity W., et al.
Publicado: (2020)