Cargando…
Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning
MOTIVATION: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts...
Autores principales: | Hocking, Toby Dylan, Goerner-Potvin, Patricia, Morin, Andreanne, Shao, Xiaojian, Pastinen, Tomi, Bourque, Guillaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408812/ https://www.ncbi.nlm.nih.gov/pubmed/27797775 http://dx.doi.org/10.1093/bioinformatics/btw672 |
Ejemplares similares
-
Increased peak detection accuracy in over-dispersed ChIP-seq data with supervised segmentation models
por: Liehrmann, Arnaud, et al.
Publicado: (2021) -
Shape-based peak identification for ChIP-Seq
por: Hower, Valerie, et al.
Publicado: (2011) -
ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
por: Wu, George, et al.
Publicado: (2013) -
BayesPeak: Bayesian analysis of ChIP-seq data
por: Spyrou, Christiana, et al.
Publicado: (2009) -
Evaluation of Algorithm Performance in ChIP-Seq Peak Detection
por: Wilbanks, Elizabeth G., et al.
Publicado: (2010)