Cargando…
Accelerating Bayesian inference for evolutionary biology models
MOTIVATION: Bayesian inference is widely used nowadays and relies largely on Markov chain Monte Carlo (MCMC) methods. Evolutionary biology has greatly benefited from the developments of MCMC methods, but the design of more complex and realistic models and the ever growing availability of novel data...
Autores principales: | Meyer, Xavier, Chopard, Bastien, Salamin, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408833/ https://www.ncbi.nlm.nih.gov/pubmed/28025203 http://dx.doi.org/10.1093/bioinformatics/btw712 |
Ejemplares similares
-
Posterior marginalization accelerates Bayesian inference for dynamical models of biological processes
por: Raimúndez, Elba, et al.
Publicado: (2023) -
Accelerating Bayesian inference of dependency between mixed-type biological traits
por: Zhang, Zhenyu, et al.
Publicado: (2023) -
Generalizing Bayesian phylogenetics to infer shared evolutionary events
por: Oaks, Jamie R., et al.
Publicado: (2022) -
Topological approximate Bayesian computation for parameter inference of an angiogenesis model
por: Thorne, Thomas, et al.
Publicado: (2022) -
On predictive inference for intractable models via approximate Bayesian computation
por: Järvenpää, Marko, et al.
Publicado: (2023)