Cargando…
A comparison of multiple testing adjustment methods with block-correlation positively-dependent tests
In high dimensional data analysis (such as gene expression, spatial epidemiology, or brain imaging studies), we often test thousands or more hypotheses simultaneously. As the number of tests increases, the chance of observing some statistically significant tests is very high even when all null hypot...
Autores principales: | Stevens, John R., Al Masud, Abdullah, Suyundikov, Anvar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409054/ https://www.ncbi.nlm.nih.gov/pubmed/28453517 http://dx.doi.org/10.1371/journal.pone.0176124 |
Ejemplares similares
-
Accounting for Dependence Induced by Weighted KNN Imputation in Paired Samples, Motivated by a Colorectal Cancer Study
por: Suyundikov, Anvar, et al.
Publicado: (2015) -
Incorporation of subject-level covariates in quantile normalization of miRNA data
por: Suyundikov, Anvar, et al.
Publicado: (2015) -
Group Testing with Blocks of Positives and Inhibitors
por: Bui, Thach V., et al.
Publicado: (2022) -
Targeted box and blocks test: Normative data and comparison to standard tests
por: Kontson, Kimberly, et al.
Publicado: (2017) -
Genome-wide association studies of rheumatoid arthritis data via multiple hypothesis testing methods for correlated tests
por: Kang, Guolian, et al.
Publicado: (2009)