Cargando…
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines
MOTIVATION: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters....
Autores principales: | Teodoro, George, Kurç, Tahsin M, Taveira, Luís F R, Melo, Alba C M A, Gao, Yi, Kong, Jun, Saltz, Joel H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409344/ https://www.ncbi.nlm.nih.gov/pubmed/28062445 http://dx.doi.org/10.1093/bioinformatics/btw749 |
Ejemplares similares
-
Effective and efficient active learning for deep learning-based tissue image analysis
por: Meirelles, André L S, et al.
Publicado: (2023) -
Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification
por: Meirelles, André L. S., et al.
Publicado: (2022) -
A Methodology for Texture Feature-based Quality Assessment in Nucleus Segmentation of Histopathology Image
por: Wen, Si, et al.
Publicado: (2017) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Scalable analysis of Big pathology image data cohorts using efficient methods and high-performance computing strategies
por: Kurc, Tahsin, et al.
Publicado: (2015)