Cargando…
Personalized glucose forecasting for type 2 diabetes using data assimilation
Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of differe...
Autores principales: | Albers, David J., Levine, Matthew, Gluckman, Bruce, Ginsberg, Henry, Hripcsak, George, Mamykina, Lena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409456/ https://www.ncbi.nlm.nih.gov/pubmed/28448498 http://dx.doi.org/10.1371/journal.pcbi.1005232 |
Ejemplares similares
-
Correction: Personalized glucose forecasting for type 2 diabetes using data assimilation
por: Albers, David J., et al.
Publicado: (2021) -
Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype
por: Albers, David J, et al.
Publicado: (2018) -
Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes
por: Woldaregay, Ashenafi Zebene, et al.
Publicado: (2019) -
Data assimilation on mechanistic models of glucose metabolism predicts glycemic states in adolescents following bariatric surgery
por: Richter, Lauren R., et al.
Publicado: (2022) -
Probabilistic forecasting and Bayesian data assimilation
por: Reich, Sebastian, et al.
Publicado: (2015)