Cargando…

Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage

Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3′-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurod...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiang, Shih-Chieh, Meagher, Martin, Kassouf, Nick, Hafezparast, Majid, McKinnon, Peter J., Haywood, Rachel, El-Khamisy, Sherif F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409496/
https://www.ncbi.nlm.nih.gov/pubmed/28508041
http://dx.doi.org/10.1126/sciadv.1602506
_version_ 1783232478394187776
author Chiang, Shih-Chieh
Meagher, Martin
Kassouf, Nick
Hafezparast, Majid
McKinnon, Peter J.
Haywood, Rachel
El-Khamisy, Sherif F.
author_facet Chiang, Shih-Chieh
Meagher, Martin
Kassouf, Nick
Hafezparast, Majid
McKinnon, Peter J.
Haywood, Rachel
El-Khamisy, Sherif F.
author_sort Chiang, Shih-Chieh
collection PubMed
description Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3′-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy. Although much is known about the repair of PDBs in the nucleus, little is known about this process in the mitochondria. We reveal that TDP1 resolves mitochondrial PDBs (mtPDBs), thereby promoting mitochondrial gene transcription. Overexpression of a toxic form of mitochondrial topoisomerase I (TOP1mt*), which generates excessive mtPDBs, results in a TDP1-dependent compensatory up-regulation of mitochondrial gene transcription. In the absence of TDP1, the imbalance in transcription of mitochondrial- and nuclear-encoded electron transport chain (ETC) subunits results in misassembly of ETC complex III. Bioenergetics profiling further reveals that TDP1 promotes oxidative phosphorylation under both basal and high energy demands. It is known that mitochondrial dysfunction results in free radical leakage and nuclear DNA damage; however, the detection of intermediates of radical damage to DNA is yet to be shown. Consequently, we report an increased accumulation of carbon-centered radicals in cells lacking TDP1, using electron spin resonance spectroscopy. Overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) reduces carbon-centered adducts and protects TDP1-deficient cells from oxidative stress. Conversely, overexpression of the amyotrophic lateral sclerosis–associated mutant SOD1(G93A) leads to marked sensitivity. Whereas Tdp1 knockout mice develop normally, overexpression of SOD1(G93A) suggests early embryonic lethality. Together, our data show that TDP1 resolves mtPDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species–induced damage.
format Online
Article
Text
id pubmed-5409496
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-54094962017-05-15 Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage Chiang, Shih-Chieh Meagher, Martin Kassouf, Nick Hafezparast, Majid McKinnon, Peter J. Haywood, Rachel El-Khamisy, Sherif F. Sci Adv Research Articles Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3′-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy. Although much is known about the repair of PDBs in the nucleus, little is known about this process in the mitochondria. We reveal that TDP1 resolves mitochondrial PDBs (mtPDBs), thereby promoting mitochondrial gene transcription. Overexpression of a toxic form of mitochondrial topoisomerase I (TOP1mt*), which generates excessive mtPDBs, results in a TDP1-dependent compensatory up-regulation of mitochondrial gene transcription. In the absence of TDP1, the imbalance in transcription of mitochondrial- and nuclear-encoded electron transport chain (ETC) subunits results in misassembly of ETC complex III. Bioenergetics profiling further reveals that TDP1 promotes oxidative phosphorylation under both basal and high energy demands. It is known that mitochondrial dysfunction results in free radical leakage and nuclear DNA damage; however, the detection of intermediates of radical damage to DNA is yet to be shown. Consequently, we report an increased accumulation of carbon-centered radicals in cells lacking TDP1, using electron spin resonance spectroscopy. Overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) reduces carbon-centered adducts and protects TDP1-deficient cells from oxidative stress. Conversely, overexpression of the amyotrophic lateral sclerosis–associated mutant SOD1(G93A) leads to marked sensitivity. Whereas Tdp1 knockout mice develop normally, overexpression of SOD1(G93A) suggests early embryonic lethality. Together, our data show that TDP1 resolves mtPDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species–induced damage. American Association for the Advancement of Science 2017-04-28 /pmc/articles/PMC5409496/ /pubmed/28508041 http://dx.doi.org/10.1126/sciadv.1602506 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Chiang, Shih-Chieh
Meagher, Martin
Kassouf, Nick
Hafezparast, Majid
McKinnon, Peter J.
Haywood, Rachel
El-Khamisy, Sherif F.
Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title_full Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title_fullStr Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title_full_unstemmed Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title_short Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical–induced DNA damage
title_sort mitochondrial protein-linked dna breaks perturb mitochondrial gene transcription and trigger free radical–induced dna damage
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409496/
https://www.ncbi.nlm.nih.gov/pubmed/28508041
http://dx.doi.org/10.1126/sciadv.1602506
work_keys_str_mv AT chiangshihchieh mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT meaghermartin mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT kassoufnick mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT hafezparastmajid mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT mckinnonpeterj mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT haywoodrachel mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage
AT elkhamisysheriff mitochondrialproteinlinkeddnabreaksperturbmitochondrialgenetranscriptionandtriggerfreeradicalinduceddnadamage