Cargando…
Prediction of post-translational modification sites using multiple kernel support vector machine
Protein post-translational modification (PTM) is an important mechanism that is involved in the regulation of protein function. Considering the high-cost and labor-intensive of experimental identification, many computational prediction methods are currently available for the prediction of PTM sites...
Autores principales: | Wang, BingHua, Wang, Minghui, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410141/ https://www.ncbi.nlm.nih.gov/pubmed/28462053 http://dx.doi.org/10.7717/peerj.3261 |
Ejemplares similares
-
ksrMKL: a novel method for identification of kinase–substrate relationships using multiple kernel learning
por: Wang, Minghui, et al.
Publicado: (2017) -
Deep learning and support vector machines for transcription start site identification
por: Barbero-Aparicio, José A., et al.
Publicado: (2023) -
Classification of genomic components and prediction of genes of Begomovirus based on subsequence natural vector and support vector machine
por: Pei, Shaojun, et al.
Publicado: (2020) -
miRBoost: boosting support vector machines for microRNA precursor classification
por: Tran, Van Du T., et al.
Publicado: (2015) -
Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine
por: Kumar, Ravindra, et al.
Publicado: (2017)