Cargando…
SC3 - consensus clustering of single-cell RNA-Seq data
Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering s...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410170/ https://www.ncbi.nlm.nih.gov/pubmed/28346451 http://dx.doi.org/10.1038/nmeth.4236 |
_version_ | 1783232623651323904 |
---|---|
author | Kiselev, Vladimir Yu. Kirschner, Kristina Schaub, Michael T. Andrews, Tallulah Yiu, Andrew Chandra, Tamir Natarajan, Kedar N Reik, Wolf Barahona, Mauricio Green, Anthony R Hemberg, Martin |
author_facet | Kiselev, Vladimir Yu. Kirschner, Kristina Schaub, Michael T. Andrews, Tallulah Yiu, Andrew Chandra, Tamir Natarajan, Kedar N Reik, Wolf Barahona, Mauricio Green, Anthony R Hemberg, Martin |
author_sort | Kiselev, Vladimir Yu. |
collection | PubMed |
description | Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. |
format | Online Article Text |
id | pubmed-5410170 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-54101702017-09-27 SC3 - consensus clustering of single-cell RNA-Seq data Kiselev, Vladimir Yu. Kirschner, Kristina Schaub, Michael T. Andrews, Tallulah Yiu, Andrew Chandra, Tamir Natarajan, Kedar N Reik, Wolf Barahona, Mauricio Green, Anthony R Hemberg, Martin Nat Methods Article Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation based on global transcriptome profiles. We present Single-Cell Consensus Clustering (SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach. We demonstrate that SC3 is capable of identifying subclones based on the transcriptomes from neoplastic cells collected from patients. 2017-03-27 2017-05 /pmc/articles/PMC5410170/ /pubmed/28346451 http://dx.doi.org/10.1038/nmeth.4236 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Kiselev, Vladimir Yu. Kirschner, Kristina Schaub, Michael T. Andrews, Tallulah Yiu, Andrew Chandra, Tamir Natarajan, Kedar N Reik, Wolf Barahona, Mauricio Green, Anthony R Hemberg, Martin SC3 - consensus clustering of single-cell RNA-Seq data |
title | SC3 - consensus clustering of single-cell RNA-Seq data |
title_full | SC3 - consensus clustering of single-cell RNA-Seq data |
title_fullStr | SC3 - consensus clustering of single-cell RNA-Seq data |
title_full_unstemmed | SC3 - consensus clustering of single-cell RNA-Seq data |
title_short | SC3 - consensus clustering of single-cell RNA-Seq data |
title_sort | sc3 - consensus clustering of single-cell rna-seq data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410170/ https://www.ncbi.nlm.nih.gov/pubmed/28346451 http://dx.doi.org/10.1038/nmeth.4236 |
work_keys_str_mv | AT kiselevvladimiryu sc3consensusclusteringofsinglecellrnaseqdata AT kirschnerkristina sc3consensusclusteringofsinglecellrnaseqdata AT schaubmichaelt sc3consensusclusteringofsinglecellrnaseqdata AT andrewstallulah sc3consensusclusteringofsinglecellrnaseqdata AT yiuandrew sc3consensusclusteringofsinglecellrnaseqdata AT chandratamir sc3consensusclusteringofsinglecellrnaseqdata AT natarajankedarn sc3consensusclusteringofsinglecellrnaseqdata AT reikwolf sc3consensusclusteringofsinglecellrnaseqdata AT barahonamauricio sc3consensusclusteringofsinglecellrnaseqdata AT greenanthonyr sc3consensusclusteringofsinglecellrnaseqdata AT hembergmartin sc3consensusclusteringofsinglecellrnaseqdata |