Cargando…
Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer
Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-2...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410259/ https://www.ncbi.nlm.nih.gov/pubmed/28009986 http://dx.doi.org/10.18632/oncotarget.13937 |
_version_ | 1783232639946194944 |
---|---|
author | Timofeeva, Olga A. Palechor-Ceron, Nancy Li, Guanglei Yuan, Hang Krawczyk, Ewa Zhong, Xiaogang Liu, Geng Upadhyay, Geeta Dakic, Aleksandra Yu, Songtao Fang, Shuang Choudhury, Sujata Zhang, Xueping Ju, Andrew Lee, Myeong-Seon Dan, Han C. Ji, Youngmi Hou, Yong Zheng, Yun-Ling Albanese, Chris Rhim, Johng Schlegel, Richard Dritschilo, Anatoly Liu, Xuefeng |
author_facet | Timofeeva, Olga A. Palechor-Ceron, Nancy Li, Guanglei Yuan, Hang Krawczyk, Ewa Zhong, Xiaogang Liu, Geng Upadhyay, Geeta Dakic, Aleksandra Yu, Songtao Fang, Shuang Choudhury, Sujata Zhang, Xueping Ju, Andrew Lee, Myeong-Seon Dan, Han C. Ji, Youngmi Hou, Yong Zheng, Yun-Ling Albanese, Chris Rhim, Johng Schlegel, Richard Dritschilo, Anatoly Liu, Xuefeng |
author_sort | Timofeeva, Olga A. |
collection | PubMed |
description | Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer. |
format | Online Article Text |
id | pubmed-5410259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-54102592017-05-04 Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer Timofeeva, Olga A. Palechor-Ceron, Nancy Li, Guanglei Yuan, Hang Krawczyk, Ewa Zhong, Xiaogang Liu, Geng Upadhyay, Geeta Dakic, Aleksandra Yu, Songtao Fang, Shuang Choudhury, Sujata Zhang, Xueping Ju, Andrew Lee, Myeong-Seon Dan, Han C. Ji, Youngmi Hou, Yong Zheng, Yun-Ling Albanese, Chris Rhim, Johng Schlegel, Richard Dritschilo, Anatoly Liu, Xuefeng Oncotarget Research Paper Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer. Impact Journals LLC 2016-12-21 /pmc/articles/PMC5410259/ /pubmed/28009986 http://dx.doi.org/10.18632/oncotarget.13937 Text en Copyright: © 2017 Timofeeva et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Timofeeva, Olga A. Palechor-Ceron, Nancy Li, Guanglei Yuan, Hang Krawczyk, Ewa Zhong, Xiaogang Liu, Geng Upadhyay, Geeta Dakic, Aleksandra Yu, Songtao Fang, Shuang Choudhury, Sujata Zhang, Xueping Ju, Andrew Lee, Myeong-Seon Dan, Han C. Ji, Youngmi Hou, Yong Zheng, Yun-Ling Albanese, Chris Rhim, Johng Schlegel, Richard Dritschilo, Anatoly Liu, Xuefeng Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title | Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title_full | Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title_fullStr | Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title_full_unstemmed | Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title_short | Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
title_sort | conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410259/ https://www.ncbi.nlm.nih.gov/pubmed/28009986 http://dx.doi.org/10.18632/oncotarget.13937 |
work_keys_str_mv | AT timofeevaolgaa conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT palechorceronnancy conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT liguanglei conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT yuanhang conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT krawczykewa conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT zhongxiaogang conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT liugeng conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT upadhyaygeeta conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT dakicaleksandra conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT yusongtao conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT fangshuang conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT choudhurysujata conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT zhangxueping conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT juandrew conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT leemyeongseon conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT danhanc conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT jiyoungmi conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT houyong conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT zhengyunling conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT albanesechris conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT rhimjohng conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT schlegelrichard conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT dritschiloanatoly conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer AT liuxuefeng conditionallyreprogrammednormalandprimarytumorprostateepithelialcellsanovelpatientderivedcellmodelforstudiesofhumanprostatecancer |