Cargando…

The tumor suppressor capability of p53 is dependent on non-muscle myosin IIA function in head and neck cancer

Over 300,000 patients develop squamous cell carcinoma of the head and neck (HNSCC) worldwide with 25-30% of patients ultimately dying from their disease. Currently, molecular biomarkers are not used in HNSCC but several genes have been identified including mutant TP53 (mutp53) Our recent work has id...

Descripción completa

Detalles Bibliográficos
Autores principales: Coaxum, Sonya D., Tiedeken, Jessica, Garrett-Mayer, Elizabeth, Myers, Jeffrey, Rosenzweig, Steven A., Neskey, David M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410280/
https://www.ncbi.nlm.nih.gov/pubmed/28160562
http://dx.doi.org/10.18632/oncotarget.14967
Descripción
Sumario:Over 300,000 patients develop squamous cell carcinoma of the head and neck (HNSCC) worldwide with 25-30% of patients ultimately dying from their disease. Currently, molecular biomarkers are not used in HNSCC but several genes have been identified including mutant TP53 (mutp53) Our recent work has identified an approach to stratify patients with tumors harboring high or low risk TP53 mutations. Non-muscle Myosin IIA (NMIIA) was recently identified as a tumor suppressor in HNSCC. We now demonstrate that low MYH9 expression is associated with decreased survival in patients with head and neck cancer harboring low-risk mutp53 but not high-risk mutp53. Furthermore, inhibition of NMIIA leads to increased invasion in cells harboring wildtype p53 (wtp53), which was not observed in high-risk mutp53 cells. This increased invasiveness of wtp53 following NMIIA inhibition was associated with reduced p53 target gene expression and was absent in cells expressing mutp53. This reduced expression may be due, in part, to a decrease in nuclear localization of wtp53. These findings suggest that the tumor suppressor capability of wtp53 is dependent upon functional NMIIA and that the invasive phenotype of high-risk mutp53 is independent of NMIIA.