Cargando…

mTOR/autophagy pathway in the hippocampus of rats suffering intermittent hypoxia preconditioning and global cerebral ischemia-reperfusion

We explored the role of mTOR/autophagy pathway in the aggravation of cerebral ischemia-reperfusion nerve injury caused by intermittent hypoxia. Eighty male wistar rats were divided into four groups by the random number method: sham operation group (SO group, n=20), cerebral ischemia-reperfusion grou...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ya-Ning, Guo, Xiang-Fei, Li, Jian-Min, Chen, Chang-Xiang, Li, Shu-Xing, Xu, Cheng-Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410309/
https://www.ncbi.nlm.nih.gov/pubmed/28177899
http://dx.doi.org/10.18632/oncotarget.15058
Descripción
Sumario:We explored the role of mTOR/autophagy pathway in the aggravation of cerebral ischemia-reperfusion nerve injury caused by intermittent hypoxia. Eighty male wistar rats were divided into four groups by the random number method: sham operation group (SO group, n=20), cerebral ischemia-reperfusion group (I/R group, n=20), intermittent hypoxia and cerebral ischemia-reperfusion group (IH+I/R group, n=20), intermittent hypoxia and cerebral ischemia-reperfusion group plus mTOR inhibitor group (inhibitor group, n=20). The results showed that compared with the SO group, HE staining showed structural damage of neurons at each time point, the immunohistochemical assay showed an increasing number of mTOR and beclin1 immune-positive cells (P<0.05) and RT-PCR showed enhanced expression of mTOR and beclin1 protein in the I/R group (P<0.05). Compared with the I/R group, HE staining showed exacerbating structural damage of neurons at each time point, the immunohistochemical assay showed an increasing number of mTOR and beclin1 immune-positive cells (P<0.05) and RT-PCR showed enhanced expression of mTOR and beclin1 protein in the IH+I/R group (P<0.05). Compared with the IH+I/R group, HE staining showed remissive structural damage of neurons at each time point, the immunohistochemical assay showed a decreasing number of mTOR immune-positive cells and a rising number of beclin1immune-positive cells (P<0.05) and RT-PCR showed weakened expression of mTOR protein and enhanced expression of beclin1 protein in the inhibitor group (P<0.05). Thence, the present study indicated that intermittent hypoxia preconditioning can aggravate the nerve injury of the global cerebral ischemia-reperfusion model, and the mechanism is associated with the activation of mTOR/autophagy pathway.