Cargando…
Next generation mapping reveals novel large genomic rearrangements in prostate cancer
Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410329/ https://www.ncbi.nlm.nih.gov/pubmed/28423598 http://dx.doi.org/10.18632/oncotarget.15802 |
_version_ | 1783232658094948352 |
---|---|
author | Jaratlerdsiri, Weerachai Chan, Eva K.F. Petersen, Desiree C. Yang, Claire Croucher, Peter I. Bornman, M.S. Riana Sheth, Palak Hayes, Vanessa M. |
author_facet | Jaratlerdsiri, Weerachai Chan, Eva K.F. Petersen, Desiree C. Yang, Claire Croucher, Peter I. Bornman, M.S. Riana Sheth, Palak Hayes, Vanessa M. |
author_sort | Jaratlerdsiri, Weerachai |
collection | PubMed |
description | Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically feasible next generation sequencing (NGS) technologies. Next generation mapping (NGM) is a new technology that allows for the interrogation of megabase length DNA molecules outside the detection range of single-base resolution NGS. In this study, we sought to determine the feasibility of using the Irys (Bionano Genomics Inc.) nanochannel NGM technology to generate whole genome maps of a primary prostate tumor and matched blood from a Gleason score 7 (4 + 3), ETS-fusion negative prostate cancer patient. With an effective mapped coverage of 35X and sequence coverage of 60X, and an estimated 43% tumor purity, we identified 85 large somatic structural rearrangements and 6,172 smaller somatic variants, respectively. The vast majority of the large SVs (89%), of which 73% are insertions, were not detectable ab initio using high-coverage short-read NGS. However, guided manual inspection of single NGS reads and de novo assembled scaffolds of NGM-derived candidate regions allowed for confirmation of 94% of these large SVs, with over a third impacting genes with oncogenic potential. From this single-patient study, the first cancer study to integrate NGS and NGM data, we hypothesise that there exists a novel spectrum of large genomic rearrangements in prostate cancer, that these large genomic rearrangements are likely early events in tumorigenesis, and they have potential to enhance taxonomy. |
format | Online Article Text |
id | pubmed-5410329 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-54103292017-05-04 Next generation mapping reveals novel large genomic rearrangements in prostate cancer Jaratlerdsiri, Weerachai Chan, Eva K.F. Petersen, Desiree C. Yang, Claire Croucher, Peter I. Bornman, M.S. Riana Sheth, Palak Hayes, Vanessa M. Oncotarget Research Paper Complex genomic rearrangements are common molecular events driving prostate carcinogenesis. Clinical significance, however, has yet to be fully elucidated. Detecting the full range and subtypes of large structural variants (SVs), greater than one kilobase in length, is challenging using clinically feasible next generation sequencing (NGS) technologies. Next generation mapping (NGM) is a new technology that allows for the interrogation of megabase length DNA molecules outside the detection range of single-base resolution NGS. In this study, we sought to determine the feasibility of using the Irys (Bionano Genomics Inc.) nanochannel NGM technology to generate whole genome maps of a primary prostate tumor and matched blood from a Gleason score 7 (4 + 3), ETS-fusion negative prostate cancer patient. With an effective mapped coverage of 35X and sequence coverage of 60X, and an estimated 43% tumor purity, we identified 85 large somatic structural rearrangements and 6,172 smaller somatic variants, respectively. The vast majority of the large SVs (89%), of which 73% are insertions, were not detectable ab initio using high-coverage short-read NGS. However, guided manual inspection of single NGS reads and de novo assembled scaffolds of NGM-derived candidate regions allowed for confirmation of 94% of these large SVs, with over a third impacting genes with oncogenic potential. From this single-patient study, the first cancer study to integrate NGS and NGM data, we hypothesise that there exists a novel spectrum of large genomic rearrangements in prostate cancer, that these large genomic rearrangements are likely early events in tumorigenesis, and they have potential to enhance taxonomy. Impact Journals LLC 2017-03-01 /pmc/articles/PMC5410329/ /pubmed/28423598 http://dx.doi.org/10.18632/oncotarget.15802 Text en Copyright: © 2017 Jaratlerdsiri et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Jaratlerdsiri, Weerachai Chan, Eva K.F. Petersen, Desiree C. Yang, Claire Croucher, Peter I. Bornman, M.S. Riana Sheth, Palak Hayes, Vanessa M. Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title | Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title_full | Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title_fullStr | Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title_full_unstemmed | Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title_short | Next generation mapping reveals novel large genomic rearrangements in prostate cancer |
title_sort | next generation mapping reveals novel large genomic rearrangements in prostate cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410329/ https://www.ncbi.nlm.nih.gov/pubmed/28423598 http://dx.doi.org/10.18632/oncotarget.15802 |
work_keys_str_mv | AT jaratlerdsiriweerachai nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT chanevakf nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT petersendesireec nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT yangclaire nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT croucherpeteri nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT bornmanmsriana nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT shethpalak nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer AT hayesvanessam nextgenerationmappingrevealsnovellargegenomicrearrangementsinprostatecancer |