Cargando…
Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
Integrative analyses of high-throughput ‘omic data, such as DNA methylation, DNA copy number alteration, mRNA and protein expression levels, have created unprecedented opportunities to understand the molecular basis of human disease. In particular, integrative analyses have been the cornerstone in t...
Autores principales: | Chalise, Prabhakar, Fridley, Brooke L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411077/ https://www.ncbi.nlm.nih.gov/pubmed/28459819 http://dx.doi.org/10.1371/journal.pone.0176278 |
Ejemplares similares
-
Multi-omics assessment of dilated cardiomyopathy using non-negative matrix factorization
por: Tappu, Rewati, et al.
Publicado: (2022) -
PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data
por: Pierre-Jean, Morgane, et al.
Publicado: (2021) -
HONMF: integration analysis of multi-omics microbiome data via matrix factorization and hypergraph
por: Ma, Yuanyuan, et al.
Publicado: (2023) -
Multi-omic and multi-view clustering algorithms: review and cancer benchmark
por: Rappoport, Nimrod, et al.
Publicado: (2019) -
Multi-omic and multi-view clustering algorithms: review and cancer benchmark
por: Rappoport, Nimrod, et al.
Publicado: (2018)