Cargando…
Semantic prioritization of novel causative genomic variants
Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of fea...
Autores principales: | Boudellioua, Imane, Mahamad Razali, Rozaimi B., Kulmanov, Maxat, Hashish, Yasmeen, Bajic, Vladimir B., Goncalves-Serra, Eva, Schoenmakers, Nadia, Gkoutos, Georgios V., Schofield, Paul N., Hoehndorf, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411092/ https://www.ncbi.nlm.nih.gov/pubmed/28414800 http://dx.doi.org/10.1371/journal.pcbi.1005500 |
Ejemplares similares
-
DeepPVP: phenotype-based prioritization of causative variants using deep learning
por: Boudellioua, Imane, et al.
Publicado: (2019) -
OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants
por: Boudellioua, Imane, et al.
Publicado: (2018) -
Ontology-based validation and identification of regulatory phenotypes
por: Kulmanov, Maxat, et al.
Publicado: (2018) -
Evaluating the effect of annotation size on measures of semantic similarity
por: Kulmanov, Maxat, et al.
Publicado: (2017) -
PathoPhenoDB, linking human pathogens to their phenotypes in support of infectious disease research
por: Kafkas, Şenay, et al.
Publicado: (2019)