Cargando…

Evaluation of the permeation of antineoplastic agents through medical gloves of varying materials and thickness and with varying surface treatments

BACKGROUND: Medical gloves are an important piece of personal protective equipment that prevents exposure to antineoplastic agents. The permeability of medical gloves to antineoplastic agents is a crucial factor in the appropriate selection of gloves. However, the relationship between glove permeabi...

Descripción completa

Detalles Bibliográficos
Autores principales: Oriyama, Toyohito, Yamamoto, Takehito, Yanagihara, Yoshitsugu, Nara, Katsuhiko, Abe, Toshihide, Nakajima, Katsuyoshi, Aoyama, Takao, Suzuki, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412027/
https://www.ncbi.nlm.nih.gov/pubmed/28469932
http://dx.doi.org/10.1186/s40780-017-0082-y
Descripción
Sumario:BACKGROUND: Medical gloves are an important piece of personal protective equipment that prevents exposure to antineoplastic agents. The permeability of medical gloves to antineoplastic agents is a crucial factor in the appropriate selection of gloves. However, the relationship between glove permeability and material type, thickness, and surface treatment is poorly understood. METHODS: A continuous flow in-line cell device was used for the evaluation of the permeation of five antineoplastic agents (etoposide, cyclophosphamide, doxorubicin hydrochloride, paclitaxel, and fluorouracil) through medical gloves. Medical gloves made of three types of materials (chlorinated latex, non-chlorinated latex, and nitrile) were subjected to a permeability test. The antineoplastic agents in test solutions were tested at the highest concentrations employed in general clinical practice. Then, the relationship between glove thickness and permeability was assessed using chlorinated latex gloves with thicknesses of 0.1, 0.15, 0.2, and 0.1 mm × 2 (to represent the practice of “double gloving”). RESULTS: Only cyclophosphamide and fluorouracil showed detectable permeation through the tested latex gloves. The permeability of chlorinated latex was lower than that of non-chlorinated latex. Nitrile gloves showed no detectable permeability to any of the five antineoplastic agents tested. The permeability of chlorinated latex gloves depended on the thickness of the gloves; 0.1 mm × 2 (double gloving) exhibited the highest resistance to permeation by antineoplastic agents. CONCLUSIONS: The permeability of medical gloves was dependent on the type of material and the surface treatment and decreased as the thickness of the glove increased. The double glove was shown to prevent antineoplastic agent permeation more efficiently than did a single glove of the same total thickness. These results provided important information that will guide the appropriate selection of medical gloves.