Cargando…

Prp19 Arrests Cell Cycle via Cdc5L in Hepatocellular Carcinoma Cells

Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. Recently, it has been identified as a candidate oncogene in hepatocellular carcinoma (HCC). However, the role of Prp19 in tumor biology is still elusive. Here, we reported...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Renzheng, Xue, Ruyi, Qu, Di, Yin, Jie, Shen, Xi-Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412362/
https://www.ncbi.nlm.nih.gov/pubmed/28387715
http://dx.doi.org/10.3390/ijms18040778
Descripción
Sumario:Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. Recently, it has been identified as a candidate oncogene in hepatocellular carcinoma (HCC). However, the role of Prp19 in tumor biology is still elusive. Here, we reported that Prp19 arrested cell cycle in HCC cells via regulating G2/M transition. Mechanistic insights revealed that silencing Prp19 inhibited the expression of cell division cycle 5-like (Cdc5L) via repressing the translation of Cdc5L mRNA and facilitating lysosome-mediated degradation of Cdc5L in HCC cells. Furthermore, we found that silencing Prp19 induced cell cycle arrest could be partially resumed by overexpressing Cdc5L. This work implied that Prp19 participated in mitotic progression and thus could be a promising therapeutic target of HCC.