Cargando…
Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage
Early brain injury (EBI) is considered to be the major factor associated with high morbidity and mortality after subarachnoid haemorrhage (SAH). Apoptosis is the major pathological mechanism of EBI, and its pathogenesis has not been fully clarified. Here, we report that thioredoxin-interacting prote...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412438/ https://www.ncbi.nlm.nih.gov/pubmed/28420192 http://dx.doi.org/10.3390/ijms18040854 |
_version_ | 1783233002875125760 |
---|---|
author | Zhao, Qing Che, Xudong Zhang, Hongxia Tan, Guanping Liu, Liu Jiang, Dengzhi Zhao, Jun Xiang, Xiang Sun, Xiaochuan He, Zhaohui |
author_facet | Zhao, Qing Che, Xudong Zhang, Hongxia Tan, Guanping Liu, Liu Jiang, Dengzhi Zhao, Jun Xiang, Xiang Sun, Xiaochuan He, Zhaohui |
author_sort | Zhao, Qing |
collection | PubMed |
description | Early brain injury (EBI) is considered to be the major factor associated with high morbidity and mortality after subarachnoid haemorrhage (SAH). Apoptosis is the major pathological mechanism of EBI, and its pathogenesis has not been fully clarified. Here, we report that thioredoxin-interacting protein (TXNIP), which is induced by protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), participates in EBI by promoting apoptosis. By using adult male Sprague-Dawley rats to establish SAH models, as well as Terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, immunofluorescence, and western blot, we found that TXNIP expression significantly increased after SAH in comparison to the sham group and peaked at 48 h (up to 3.2-fold). Meanwhile, TXNIP was widely expressed in neurons and colocalized with TUNEL-positive cells in the hippocampus and cortex of SAH rats. After administration of TXNIP inhibitor-resveratrol (60 mg/kg), TXNIP small interfering RNA (siRNA) and the PERK inhibitor GSK2656157, TXNIP expression was significantly reduced, accompanied by an attenuation of apoptosis and prognostic indicators, including SAH grade, neurological deficits, brain water content, and blood-brain barrier (BBB) permeability. Collectively, these results suggest that TXNIP may participate in EBI after SAH by mediating apoptosis. The blockage of TXNIP induced by PERK could be a potential therapeutic strategy for SAH treatment. |
format | Online Article Text |
id | pubmed-5412438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54124382017-05-05 Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage Zhao, Qing Che, Xudong Zhang, Hongxia Tan, Guanping Liu, Liu Jiang, Dengzhi Zhao, Jun Xiang, Xiang Sun, Xiaochuan He, Zhaohui Int J Mol Sci Article Early brain injury (EBI) is considered to be the major factor associated with high morbidity and mortality after subarachnoid haemorrhage (SAH). Apoptosis is the major pathological mechanism of EBI, and its pathogenesis has not been fully clarified. Here, we report that thioredoxin-interacting protein (TXNIP), which is induced by protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK), participates in EBI by promoting apoptosis. By using adult male Sprague-Dawley rats to establish SAH models, as well as Terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining, immunofluorescence, and western blot, we found that TXNIP expression significantly increased after SAH in comparison to the sham group and peaked at 48 h (up to 3.2-fold). Meanwhile, TXNIP was widely expressed in neurons and colocalized with TUNEL-positive cells in the hippocampus and cortex of SAH rats. After administration of TXNIP inhibitor-resveratrol (60 mg/kg), TXNIP small interfering RNA (siRNA) and the PERK inhibitor GSK2656157, TXNIP expression was significantly reduced, accompanied by an attenuation of apoptosis and prognostic indicators, including SAH grade, neurological deficits, brain water content, and blood-brain barrier (BBB) permeability. Collectively, these results suggest that TXNIP may participate in EBI after SAH by mediating apoptosis. The blockage of TXNIP induced by PERK could be a potential therapeutic strategy for SAH treatment. MDPI 2017-04-18 /pmc/articles/PMC5412438/ /pubmed/28420192 http://dx.doi.org/10.3390/ijms18040854 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhao, Qing Che, Xudong Zhang, Hongxia Tan, Guanping Liu, Liu Jiang, Dengzhi Zhao, Jun Xiang, Xiang Sun, Xiaochuan He, Zhaohui Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title | Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title_full | Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title_fullStr | Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title_full_unstemmed | Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title_short | Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage |
title_sort | thioredoxin-interacting protein mediates apoptosis in early brain injury after subarachnoid haemorrhage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412438/ https://www.ncbi.nlm.nih.gov/pubmed/28420192 http://dx.doi.org/10.3390/ijms18040854 |
work_keys_str_mv | AT zhaoqing thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT chexudong thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT zhanghongxia thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT tanguanping thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT liuliu thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT jiangdengzhi thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT zhaojun thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT xiangxiang thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT sunxiaochuan thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage AT hezhaohui thioredoxininteractingproteinmediatesapoptosisinearlybraininjuryaftersubarachnoidhaemorrhage |