Cargando…
A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry
Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412989/ https://www.ncbi.nlm.nih.gov/pubmed/28464022 http://dx.doi.org/10.1371/journal.ppat.1006308 |
_version_ | 1783233112268865536 |
---|---|
author | Aydin, Inci Villalonga-Planells, Ruth Greune, Lilo Bronnimann, Matthew P. Calton, Christine M. Becker, Miriam Lai, Kun-Yi Campos, Samuel K. Schmidt, M. Alexander Schelhaas, Mario |
author_facet | Aydin, Inci Villalonga-Planells, Ruth Greune, Lilo Bronnimann, Matthew P. Calton, Christine M. Becker, Miriam Lai, Kun-Yi Campos, Samuel K. Schmidt, M. Alexander Schelhaas, Mario |
author_sort | Aydin, Inci |
collection | PubMed |
description | Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei. |
format | Online Article Text |
id | pubmed-5412989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54129892017-05-14 A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry Aydin, Inci Villalonga-Planells, Ruth Greune, Lilo Bronnimann, Matthew P. Calton, Christine M. Becker, Miriam Lai, Kun-Yi Campos, Samuel K. Schmidt, M. Alexander Schelhaas, Mario PLoS Pathog Research Article Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei. Public Library of Science 2017-05-02 /pmc/articles/PMC5412989/ /pubmed/28464022 http://dx.doi.org/10.1371/journal.ppat.1006308 Text en © 2017 Aydin et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Aydin, Inci Villalonga-Planells, Ruth Greune, Lilo Bronnimann, Matthew P. Calton, Christine M. Becker, Miriam Lai, Kun-Yi Campos, Samuel K. Schmidt, M. Alexander Schelhaas, Mario A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title | A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title_full | A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title_fullStr | A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title_full_unstemmed | A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title_short | A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
title_sort | central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412989/ https://www.ncbi.nlm.nih.gov/pubmed/28464022 http://dx.doi.org/10.1371/journal.ppat.1006308 |
work_keys_str_mv | AT aydininci acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT villalongaplanellsruth acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT greunelilo acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT bronnimannmatthewp acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT caltonchristinem acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT beckermiriam acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT laikunyi acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT campossamuelk acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT schmidtmalexander acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT schelhaasmario acentralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT aydininci centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT villalongaplanellsruth centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT greunelilo centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT bronnimannmatthewp centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT caltonchristinem centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT beckermiriam centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT laikunyi centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT campossamuelk centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT schmidtmalexander centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry AT schelhaasmario centralregionintheminorcapsidproteinofpapillomavirusesfacilitatesviralgenometetheringandmembranepenetrationformitoticnuclearentry |