Cargando…
Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head
INTRODUCTION: Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413021/ https://www.ncbi.nlm.nih.gov/pubmed/28464029 http://dx.doi.org/10.1371/journal.pone.0175366 |
_version_ | 1783233120052445184 |
---|---|
author | Wang, Wei Hu, Wei Yang, Pei Dang, Xiao Qian Li, Xiao Hui Wang, Kun Zheng |
author_facet | Wang, Wei Hu, Wei Yang, Pei Dang, Xiao Qian Li, Xiao Hui Wang, Kun Zheng |
author_sort | Wang, Wei |
collection | PubMed |
description | INTRODUCTION: Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. METHODS: Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. RESULTS: The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. CONCLUSIONS: Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. |
format | Online Article Text |
id | pubmed-5413021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54130212017-05-14 Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head Wang, Wei Hu, Wei Yang, Pei Dang, Xiao Qian Li, Xiao Hui Wang, Kun Zheng PLoS One Research Article INTRODUCTION: Core decompression is an efficient treatment for early stage ischemic necrosis of the femoral head. In conventional procedures, the pre-operative X-ray only shows one plane of the ischemic area, which often results in inaccurate drilling. This paper introduces a new method that uses computer-assisted technology and rapid prototyping to enhance drilling accuracy during core decompression surgeries and presents a validation study of cadaveric tests. METHODS: Twelve cadaveric human femurs were used to simulate early-stage ischemic necrosis. The core decompression target at the anterolateral femoral head was simulated using an embedded glass ball (target). Three positioning Kirschner wires were drilled into the top and bottom of the large rotor. The specimen was then subjected to computed tomography (CT). A CT image of the specimen was imported into the Mimics software to construct a three-dimensional model including the target. The best core decompression channel was then designed using the 3D model. A navigational template for the specimen was designed using the Pro/E software and manufactured by rapid prototyping technology to guide the drilling channel. The specimen-specific navigation template was installed on the specimen using positioning Kirschner wires. Drilling was performed using a guide needle through the guiding hole on the templates. The distance between the end point of the guide needle and the target was measured to validate the patient-specific surgical accuracy. RESULTS: The average distance between the tip of the guide needle drilled through the guiding template and the target was 1.92±0.071 mm. CONCLUSIONS: Core decompression using a computer-rapid prototyping template is a reliable and accurate technique that could provide a new method of precision decompression for early-stage ischemic necrosis. Public Library of Science 2017-05-02 /pmc/articles/PMC5413021/ /pubmed/28464029 http://dx.doi.org/10.1371/journal.pone.0175366 Text en © 2017 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Wei Hu, Wei Yang, Pei Dang, Xiao Qian Li, Xiao Hui Wang, Kun Zheng Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title | Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title_full | Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title_fullStr | Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title_full_unstemmed | Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title_short | Patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
title_sort | patient-specific core decompression surgery for early-stage ischemic necrosis of the femoral head |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413021/ https://www.ncbi.nlm.nih.gov/pubmed/28464029 http://dx.doi.org/10.1371/journal.pone.0175366 |
work_keys_str_mv | AT wangwei patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead AT huwei patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead AT yangpei patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead AT dangxiaoqian patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead AT lixiaohui patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead AT wangkunzheng patientspecificcoredecompressionsurgeryforearlystageischemicnecrosisofthefemoralhead |