Cargando…
Efficacy of (+)-Lariciresinol to Control Bacterial Growth of Staphylococcus aureus and Escherichia coli O157:H7
This study was undertaken to assess the antibacterial potential of a polyphenolic compound (+)-lariciresinol isolated from Rubia philippinensis against selected foodborne pathogens Staphylococcus aureus KCTC1621 and Escherichia coli O157:H7. (+)-Lariciresinol at the tested concentrations (250 μg/dis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413575/ https://www.ncbi.nlm.nih.gov/pubmed/28515721 http://dx.doi.org/10.3389/fmicb.2017.00804 |
Sumario: | This study was undertaken to assess the antibacterial potential of a polyphenolic compound (+)-lariciresinol isolated from Rubia philippinensis against selected foodborne pathogens Staphylococcus aureus KCTC1621 and Escherichia coli O157:H7. (+)-Lariciresinol at the tested concentrations (250 μg/disk) evoked a significant antibacterial effect as a diameter of inhibition zones (12.1–14.9 mm) with minimum inhibitory concentration (MIC), and minimum bactericidal concentration values of 125–250 and 125–250 μg/mL, respectively. Furthermore, (+)-lariciresinol at MIC showed reduction in bacterial cell viabilities, efflux of potassium (K(+)) ions and release of 260 nm materials against E. coli O157:H7 and S. aureus KCTC1621. Moreover, deteriorated cell wall morphology of E. coli O157:H7 and S. aureus KCTC1621 cells treated with (+)-lariciresinol at MIC further confirmed its inhibitory effect against the tested pathogens, suggesting it to be an alternative means of antimicrobials. |
---|