Cargando…
Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients
BACKGROUND: The pronator drift test (PDT), a neurological examination, is widely used in clinics to measure motor weakness of stroke patients. OBJECTIVE: The aim of this study was to develop a PDT tool with machine learning classifiers to detect stroke symptoms based on quantification of proximal ar...
Autores principales: | Park, Eunjeong, Chang, Hyuk-Jae, Nam, Hyo Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413803/ https://www.ncbi.nlm.nih.gov/pubmed/28420599 http://dx.doi.org/10.2196/jmir.7092 |
Ejemplares similares
-
A Bayesian Network Model for Predicting Post-stroke Outcomes With Available Risk Factors
por: Park, Eunjeong, et al.
Publicado: (2018) -
Automatic Grading of Stroke Symptoms for Rapid Assessment Using Optimized Machine Learning and 4-Limb Kinematics: Clinical Validation Study
por: Park, Eunjeong, et al.
Publicado: (2020) -
Agreement and Reliability Analysis of Machine Learning Scaling and Wireless Monitoring in the Assessment of Acute Proximal Weakness by Experts and Non-Experts: A Feasibility Study
por: Park, Eunjeong, et al.
Publicado: (2022) -
Facilitating Stroke Management using Modern Information Technology
por: Nam, Hyo Suk, et al.
Publicado: (2013) -
Quantitative Colorimetric Detection of Dissolved Ammonia
Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers
por: Siribunbandal, Papaorn, et al.
Publicado: (2022)