Cargando…
Extracting Crystal Chemistry from Amorphous Carbon Structures
Carbon allotropes have been explored intensively by ab initio crystal structure prediction, but such methods are limited by the large computational cost of the underlying density functional theory (DFT). Here we show that a novel class of machine‐learning‐based interatomic potentials can be used for...
Autores principales: | Deringer, Volker L., Csányi, Gábor, Proserpio, Davide M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413819/ https://www.ncbi.nlm.nih.gov/pubmed/28271606 http://dx.doi.org/10.1002/cphc.201700151 |
Ejemplares similares
-
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019) -
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018) -
Hierarchically Structured Allotropes of Phosphorus from Data‐Driven Exploration
por: Deringer, Volker L., et al.
Publicado: (2020) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Deringer, Volker L., et al.
Publicado: (2020) -
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022)