Cargando…

Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics

Wearable contact lenses which can monitor physiological parameters have attracted substantial interests due to the capability of direct detection of biomarkers contained in body fluids. However, previously reported contact lens sensors can only monitor a single analyte at a time. Furthermore, such o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Joohee, Kim, Minji, Lee, Mi-Sun, Kim, Kukjoo, Ji, Sangyoon, Kim, Yun-Tae, Park, Jihun, Na, Kyungmin, Bae, Kwi-Hyun, Kyun Kim, Hong, Bien, Franklin, Young Lee, Chang, Park, Jang-Ung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414034/
https://www.ncbi.nlm.nih.gov/pubmed/28447604
http://dx.doi.org/10.1038/ncomms14997
Descripción
Sumario:Wearable contact lenses which can monitor physiological parameters have attracted substantial interests due to the capability of direct detection of biomarkers contained in body fluids. However, previously reported contact lens sensors can only monitor a single analyte at a time. Furthermore, such ocular contact lenses generally obstruct the field of vision of the subject. Here, we developed a multifunctional contact lens sensor that alleviates some of these limitations since it was developed on an actual ocular contact lens. It was also designed to monitor glucose within tears, as well as intraocular pressure using the resistance and capacitance of the electronic device. Furthermore, in-vivo and in-vitro tests using a live rabbit and bovine eyeball demonstrated its reliable operation. Our developed contact lens sensor can measure the glucose level in tear fluid and intraocular pressure simultaneously but yet independently based on different electrical responses.