Cargando…
Intervention in prediction measure: a new approach to assessing variable importance for random forests
BACKGROUND: Random forests are a popular method in many fields since they can be successfully applied to complex data, with a small sample size, complex interactions and correlations, mixed type predictors, etc. Furthermore, they provide variable importance measures that aid qualitative interpretati...
Autor principal: | Epifanio, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414143/ https://www.ncbi.nlm.nih.gov/pubmed/28464827 http://dx.doi.org/10.1186/s12859-017-1650-8 |
Ejemplares similares
-
An AUC-based permutation variable importance measure for random forests
por: Janitza, Silke, et al.
Publicado: (2013) -
Conditional variable importance for random forests
por: Strobl, Carolin, et al.
Publicado: (2008) -
Bias in random forest variable importance measures: Illustrations, sources and a solution
por: Strobl, Carolin, et al.
Publicado: (2007) -
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
r2VIM: A new variable selection method for random forests in genome-wide association studies
por: Szymczak, Silke, et al.
Publicado: (2016)