Cargando…

Predictors and immunological correlates of sublethal mercury exposure in vampire bats

Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibi...

Descripción completa

Detalles Bibliográficos
Autores principales: Becker, Daniel J., Chumchal, Matthew M., Bentz, Alexandra B., Platt, Steven G., Czirják, Gábor Á., Rainwater, Thomas R., Altizer, Sonia, Streicker, Daniel G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414270/
https://www.ncbi.nlm.nih.gov/pubmed/28484633
http://dx.doi.org/10.1098/rsos.170073
_version_ 1783233338854604800
author Becker, Daniel J.
Chumchal, Matthew M.
Bentz, Alexandra B.
Platt, Steven G.
Czirják, Gábor Á.
Rainwater, Thomas R.
Altizer, Sonia
Streicker, Daniel G.
author_facet Becker, Daniel J.
Chumchal, Matthew M.
Bentz, Alexandra B.
Platt, Steven G.
Czirják, Gábor Á.
Rainwater, Thomas R.
Altizer, Sonia
Streicker, Daniel G.
author_sort Becker, Daniel J.
collection PubMed
description Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibility remains unknown for bats, which appear immunologically distinct from other mammals and are reservoir hosts of many pathogens of importance to human and animal health. We here quantify total Hg (THg) in hair collected from common vampire bats (Desmodus rotundus), which feed on blood and are the main reservoir hosts of rabies virus in Latin America. We examine how diet, sampling site and year, and bat demography influence THg and test the consequences of this variation for eight immune measures. In two populations from Belize, THg concentrations in bats were best explained by an interaction between long-term diet inferred from stable isotopes and year. Bats that foraged more consistently on domestic animals exhibited higher THg. However, relationships between diet and THg were evident only in 2015 but not in 2014, which could reflect recent environmental perturbations associated with agriculture. THg concentrations were low relative to values previously observed in other bat species but still correlated with bat immunity. Bats with higher THg had more neutrophils, weaker bacterial killing ability and impaired innate immunity. These patterns suggest that temporal variation in Hg exposure may impair bat innate immunity and increase susceptibility to pathogens such as bacteria. Unexpected associations between low-level Hg exposure and immune function underscore the need to better understand the environmental sources of Hg exposure in bats and the consequences for bat immunity and susceptibility.
format Online
Article
Text
id pubmed-5414270
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-54142702017-05-08 Predictors and immunological correlates of sublethal mercury exposure in vampire bats Becker, Daniel J. Chumchal, Matthew M. Bentz, Alexandra B. Platt, Steven G. Czirják, Gábor Á. Rainwater, Thomas R. Altizer, Sonia Streicker, Daniel G. R Soc Open Sci Biology (Whole Organism) Mercury (Hg) is a pervasive heavy metal that often enters the environment from anthropogenic sources such as gold mining and agriculture. Chronic exposure to Hg can impair immune function, reducing the ability of animals to resist or recover from infections. How Hg influences immunity and susceptibility remains unknown for bats, which appear immunologically distinct from other mammals and are reservoir hosts of many pathogens of importance to human and animal health. We here quantify total Hg (THg) in hair collected from common vampire bats (Desmodus rotundus), which feed on blood and are the main reservoir hosts of rabies virus in Latin America. We examine how diet, sampling site and year, and bat demography influence THg and test the consequences of this variation for eight immune measures. In two populations from Belize, THg concentrations in bats were best explained by an interaction between long-term diet inferred from stable isotopes and year. Bats that foraged more consistently on domestic animals exhibited higher THg. However, relationships between diet and THg were evident only in 2015 but not in 2014, which could reflect recent environmental perturbations associated with agriculture. THg concentrations were low relative to values previously observed in other bat species but still correlated with bat immunity. Bats with higher THg had more neutrophils, weaker bacterial killing ability and impaired innate immunity. These patterns suggest that temporal variation in Hg exposure may impair bat innate immunity and increase susceptibility to pathogens such as bacteria. Unexpected associations between low-level Hg exposure and immune function underscore the need to better understand the environmental sources of Hg exposure in bats and the consequences for bat immunity and susceptibility. The Royal Society Publishing 2017-04-19 /pmc/articles/PMC5414270/ /pubmed/28484633 http://dx.doi.org/10.1098/rsos.170073 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Biology (Whole Organism)
Becker, Daniel J.
Chumchal, Matthew M.
Bentz, Alexandra B.
Platt, Steven G.
Czirják, Gábor Á.
Rainwater, Thomas R.
Altizer, Sonia
Streicker, Daniel G.
Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title_full Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title_fullStr Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title_full_unstemmed Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title_short Predictors and immunological correlates of sublethal mercury exposure in vampire bats
title_sort predictors and immunological correlates of sublethal mercury exposure in vampire bats
topic Biology (Whole Organism)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414270/
https://www.ncbi.nlm.nih.gov/pubmed/28484633
http://dx.doi.org/10.1098/rsos.170073
work_keys_str_mv AT beckerdanielj predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT chumchalmatthewm predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT bentzalexandrab predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT plattsteveng predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT czirjakgabora predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT rainwaterthomasr predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT altizersonia predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats
AT streickerdanielg predictorsandimmunologicalcorrelatesofsublethalmercuryexposureinvampirebats