Cargando…
Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
BACKGROUND: A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using whole-genome data. Leave-one-out cross validation can be used to quantify t...
Autores principales: | Cheng, Hao, Garrick, Dorian J., Fernando, Rohan L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414316/ https://www.ncbi.nlm.nih.gov/pubmed/28469846 http://dx.doi.org/10.1186/s40104-017-0164-6 |
Ejemplares similares
-
Marker assisted selection using best linear unbiased prediction
por: Fernando, RL, et al.
Publicado: (1989) -
Determining optimal neighborhood size for ecological studies using leave-one-out cross validation
por: Kim, Deok Ryun, et al.
Publicado: (2012) -
Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor
por: de los Campos, Gustavo, et al.
Publicado: (2013) -
Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study
por: Geroldinger, Angelika, et al.
Publicado: (2023) -
Restricted best linear unbiased prediction using canonical transformation
por: Itoh, Y, et al.
Publicado: (1990)