Cargando…
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414399/ https://www.ncbi.nlm.nih.gov/pubmed/28512572 http://dx.doi.org/10.1107/S2052252517003591 |
_version_ | 1783233369391235072 |
---|---|
author | Daurer, Benedikt J. Okamoto, Kenta Bielecki, Johan Maia, Filipe R. N. C. Mühlig, Kerstin Seibert, M. Marvin Hantke, Max F. Nettelblad, Carl Benner, W. Henry Svenda, Martin Tîmneanu, Nicuşor Ekeberg, Tomas Loh, N. Duane Pietrini, Alberto Zani, Alessandro Rath, Asawari D. Westphal, Daniel Kirian, Richard A. Awel, Salah Wiedorn, Max O. van der Schot, Gijs Carlsson, Gunilla H. Hasse, Dirk Sellberg, Jonas A. Barty, Anton Andreasson, Jakob Boutet, Sébastien Williams, Garth Koglin, Jason Andersson, Inger Hajdu, Janos Larsson, Daniel S. D. |
author_facet | Daurer, Benedikt J. Okamoto, Kenta Bielecki, Johan Maia, Filipe R. N. C. Mühlig, Kerstin Seibert, M. Marvin Hantke, Max F. Nettelblad, Carl Benner, W. Henry Svenda, Martin Tîmneanu, Nicuşor Ekeberg, Tomas Loh, N. Duane Pietrini, Alberto Zani, Alessandro Rath, Asawari D. Westphal, Daniel Kirian, Richard A. Awel, Salah Wiedorn, Max O. van der Schot, Gijs Carlsson, Gunilla H. Hasse, Dirk Sellberg, Jonas A. Barty, Anton Andreasson, Jakob Boutet, Sébastien Williams, Garth Koglin, Jason Andersson, Inger Hajdu, Janos Larsson, Daniel S. D. |
author_sort | Daurer, Benedikt J. |
collection | PubMed |
description | This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 10(12) photons per µm(2) per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers. |
format | Online Article Text |
id | pubmed-5414399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-54143992017-05-16 Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses Daurer, Benedikt J. Okamoto, Kenta Bielecki, Johan Maia, Filipe R. N. C. Mühlig, Kerstin Seibert, M. Marvin Hantke, Max F. Nettelblad, Carl Benner, W. Henry Svenda, Martin Tîmneanu, Nicuşor Ekeberg, Tomas Loh, N. Duane Pietrini, Alberto Zani, Alessandro Rath, Asawari D. Westphal, Daniel Kirian, Richard A. Awel, Salah Wiedorn, Max O. van der Schot, Gijs Carlsson, Gunilla H. Hasse, Dirk Sellberg, Jonas A. Barty, Anton Andreasson, Jakob Boutet, Sébastien Williams, Garth Koglin, Jason Andersson, Inger Hajdu, Janos Larsson, Daniel S. D. IUCrJ Research Papers This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 10(12) photons per µm(2) per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers. International Union of Crystallography 2017-04-07 /pmc/articles/PMC5414399/ /pubmed/28512572 http://dx.doi.org/10.1107/S2052252517003591 Text en © Benedikt J. Daurer et al. 2017 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/ |
spellingShingle | Research Papers Daurer, Benedikt J. Okamoto, Kenta Bielecki, Johan Maia, Filipe R. N. C. Mühlig, Kerstin Seibert, M. Marvin Hantke, Max F. Nettelblad, Carl Benner, W. Henry Svenda, Martin Tîmneanu, Nicuşor Ekeberg, Tomas Loh, N. Duane Pietrini, Alberto Zani, Alessandro Rath, Asawari D. Westphal, Daniel Kirian, Richard A. Awel, Salah Wiedorn, Max O. van der Schot, Gijs Carlsson, Gunilla H. Hasse, Dirk Sellberg, Jonas A. Barty, Anton Andreasson, Jakob Boutet, Sébastien Williams, Garth Koglin, Jason Andersson, Inger Hajdu, Janos Larsson, Daniel S. D. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title | Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title_full | Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title_fullStr | Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title_full_unstemmed | Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title_short | Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses |
title_sort | experimental strategies for imaging bioparticles with femtosecond hard x-ray pulses |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414399/ https://www.ncbi.nlm.nih.gov/pubmed/28512572 http://dx.doi.org/10.1107/S2052252517003591 |
work_keys_str_mv | AT daurerbenediktj experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT okamotokenta experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT bieleckijohan experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT maiafilipernc experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT muhligkerstin experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT seibertmmarvin experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT hantkemaxf experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT nettelbladcarl experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT bennerwhenry experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT svendamartin experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT timneanunicusor experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT ekebergtomas experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT lohnduane experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT pietrinialberto experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT zanialessandro experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT rathasawarid experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT westphaldaniel experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT kirianricharda experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT awelsalah experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT wiedornmaxo experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT vanderschotgijs experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT carlssongunillah experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT hassedirk experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT sellbergjonasa experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT bartyanton experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT andreassonjakob experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT boutetsebastien experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT williamsgarth experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT koglinjason experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT anderssoninger experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT hajdujanos experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses AT larssondanielsd experimentalstrategiesforimagingbioparticleswithfemtosecondhardxraypulses |