Cargando…
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecul...
Autores principales: | Smith, J. S., Isayev, O., Roitberg, A. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414547/ https://www.ncbi.nlm.nih.gov/pubmed/28507695 http://dx.doi.org/10.1039/c6sc05720a |
Ejemplares similares
-
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules
por: Smith, Justin S., et al.
Publicado: (2017) -
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Smith, Justin S., et al.
Publicado: (2019) -
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
por: Smith, Justin S., et al.
Publicado: (2020) -
Real-time prediction of (1)H and (13)C chemical shifts with DFT accuracy using a 3D graph neural network
por: Guan, Yanfei, et al.
Publicado: (2021) -
Tests on the Accuracy and Scalability of the Full-Potential DFT Method Based on Multiple Scattering Theory
por: Cao, Peiyu, et al.
Publicado: (2020)