Cargando…
Coexistence trend contingent to Mediterranean oaks with different leaf habits
In a previous work we developed a mathematical model to explain the co‐occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415544/ https://www.ncbi.nlm.nih.gov/pubmed/28480000 http://dx.doi.org/10.1002/ece3.2840 |
_version_ | 1783233538539126784 |
---|---|
author | Di Paola, Arianna Paquette, Alain Trabucco, Antonio Mereu, Simone Valentini, Riccardo Paparella, Francesco |
author_facet | Di Paola, Arianna Paquette, Alain Trabucco, Antonio Mereu, Simone Valentini, Riccardo Paparella, Francesco |
author_sort | Di Paola, Arianna |
collection | PubMed |
description | In a previous work we developed a mathematical model to explain the co‐occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from niche difference (i.e. different water use and water stress tolerance) between groups allows their coexistence at intermediate values of suitable soil water content. A simple formal derivation of the model expresses this hypothesis in a testable form linked uniquely to the actual evapotranspiration of forests community. In the present work we ascertain whether this simplified conclusion possesses some degree of explanatory power by comparing available data on oaks distributions and remotely sensed evapotranspiration (MODIS product) in a large‐scale survey embracing the western Mediterranean area. Our findings confirmed the basic assumptions of model addressed on large scale, but also revealed asymmetric responses to water use and water stress tolerance between evergreen and deciduous oaks that should be taken into account to increase the understating of species interactions and, ultimately, improve the modeling capacity to explain co‐occurrence. |
format | Online Article Text |
id | pubmed-5415544 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54155442017-05-05 Coexistence trend contingent to Mediterranean oaks with different leaf habits Di Paola, Arianna Paquette, Alain Trabucco, Antonio Mereu, Simone Valentini, Riccardo Paparella, Francesco Ecol Evol Original Research In a previous work we developed a mathematical model to explain the co‐occurrence of evergreen and deciduous oak groups in the Mediterranean region, regarded as one of the distinctive features of Mediterranean biodiversity. The mathematical analysis showed that a stabilizing mechanism resulting from niche difference (i.e. different water use and water stress tolerance) between groups allows their coexistence at intermediate values of suitable soil water content. A simple formal derivation of the model expresses this hypothesis in a testable form linked uniquely to the actual evapotranspiration of forests community. In the present work we ascertain whether this simplified conclusion possesses some degree of explanatory power by comparing available data on oaks distributions and remotely sensed evapotranspiration (MODIS product) in a large‐scale survey embracing the western Mediterranean area. Our findings confirmed the basic assumptions of model addressed on large scale, but also revealed asymmetric responses to water use and water stress tolerance between evergreen and deciduous oaks that should be taken into account to increase the understating of species interactions and, ultimately, improve the modeling capacity to explain co‐occurrence. John Wiley and Sons Inc. 2017-03-23 /pmc/articles/PMC5415544/ /pubmed/28480000 http://dx.doi.org/10.1002/ece3.2840 Text en © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Di Paola, Arianna Paquette, Alain Trabucco, Antonio Mereu, Simone Valentini, Riccardo Paparella, Francesco Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title | Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title_full | Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title_fullStr | Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title_full_unstemmed | Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title_short | Coexistence trend contingent to Mediterranean oaks with different leaf habits |
title_sort | coexistence trend contingent to mediterranean oaks with different leaf habits |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415544/ https://www.ncbi.nlm.nih.gov/pubmed/28480000 http://dx.doi.org/10.1002/ece3.2840 |
work_keys_str_mv | AT dipaolaarianna coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits AT paquettealain coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits AT trabuccoantonio coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits AT mereusimone coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits AT valentiniriccardo coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits AT paparellafrancesco coexistencetrendcontingenttomediterraneanoakswithdifferentleafhabits |