Cargando…
Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic
Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simula...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415699/ https://www.ncbi.nlm.nih.gov/pubmed/28484339 http://dx.doi.org/10.1098/rspa.2017.0026 |
_version_ | 1783233571436101632 |
---|---|
author | Salmanidou, D. M. Guillas, S. Georgiopoulou, A. Dias, F. |
author_facet | Salmanidou, D. M. Guillas, S. Georgiopoulou, A. Dias, F. |
author_sort | Salmanidou, D. M. |
collection | PubMed |
description | Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained. |
format | Online Article Text |
id | pubmed-5415699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-54156992017-05-08 Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic Salmanidou, D. M. Guillas, S. Georgiopoulou, A. Dias, F. Proc Math Phys Eng Sci Research Articles Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained. The Royal Society Publishing 2017-04 2017-04-12 /pmc/articles/PMC5415699/ /pubmed/28484339 http://dx.doi.org/10.1098/rspa.2017.0026 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Salmanidou, D. M. Guillas, S. Georgiopoulou, A. Dias, F. Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title | Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title_full | Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title_fullStr | Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title_full_unstemmed | Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title_short | Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic |
title_sort | statistical emulation of landslide-induced tsunamis at the rockall bank, ne atlantic |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415699/ https://www.ncbi.nlm.nih.gov/pubmed/28484339 http://dx.doi.org/10.1098/rspa.2017.0026 |
work_keys_str_mv | AT salmanidoudm statisticalemulationoflandslideinducedtsunamisattherockallbankneatlantic AT guillass statisticalemulationoflandslideinducedtsunamisattherockallbankneatlantic AT georgiopouloua statisticalemulationoflandslideinducedtsunamisattherockallbankneatlantic AT diasf statisticalemulationoflandslideinducedtsunamisattherockallbankneatlantic |