Cargando…
Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates
Starting from the Euler equation expressed in a rotating frame in spherical coordinates, coupled with the equation of mass conservation and the appropriate boundary conditions, a thin-layer (i.e. shallow water) asymptotic approximation is developed. The analysis is driven by a single, overarching as...
Autores principales: | Constantin, A., Johnson, R. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415701/ https://www.ncbi.nlm.nih.gov/pubmed/28484341 http://dx.doi.org/10.1098/rspa.2017.0063 |
Ejemplares similares
-
Blowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
por: Cheung, Ka Luen, et al.
Publicado: (2016) -
Action principle for Euler equations in body-fixed coordinate system
por: Fiziev, P, et al.
Publicado: (1994) -
Numerical solutions of the euler equations for steady flow problems
por: Eberle, Albrecht, et al.
Publicado: (1992) -
Adaptive finite element solution algorithm for the Euler equations
por: Shapiro, Richard
Publicado: (1991) -
Perturbational blowup solutions to the compressible Euler equations with damping
por: Cheung, Ka Luen
Publicado: (2016)