Cargando…
European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures
BACKGROUND: Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415952/ https://www.ncbi.nlm.nih.gov/pubmed/28472926 http://dx.doi.org/10.1186/s12864-017-3657-y |
_version_ | 1783233635133947904 |
---|---|
author | Seth-Smith, H. M. B. Busó, Leonor Sánchez Livingstone, M. Sait, M. Harris, S. R. Aitchison, K. D. Vretou, Evangelia Siarkou, V. I. Laroucau, K. Sachse, K. Longbottom, D. Thomson, N. R. |
author_facet | Seth-Smith, H. M. B. Busó, Leonor Sánchez Livingstone, M. Sait, M. Harris, S. R. Aitchison, K. D. Vretou, Evangelia Siarkou, V. I. Laroucau, K. Sachse, K. Longbottom, D. Thomson, N. R. |
author_sort | Seth-Smith, H. M. B. |
collection | PubMed |
description | BACKGROUND: Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. RESULTS: Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. CONCLUSIONS: The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3657-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5415952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-54159522017-05-04 European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures Seth-Smith, H. M. B. Busó, Leonor Sánchez Livingstone, M. Sait, M. Harris, S. R. Aitchison, K. D. Vretou, Evangelia Siarkou, V. I. Laroucau, K. Sachse, K. Longbottom, D. Thomson, N. R. BMC Genomics Research Article BACKGROUND: Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. RESULTS: Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. CONCLUSIONS: The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3657-y) contains supplementary material, which is available to authorized users. BioMed Central 2017-05-04 /pmc/articles/PMC5415952/ /pubmed/28472926 http://dx.doi.org/10.1186/s12864-017-3657-y Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Seth-Smith, H. M. B. Busó, Leonor Sánchez Livingstone, M. Sait, M. Harris, S. R. Aitchison, K. D. Vretou, Evangelia Siarkou, V. I. Laroucau, K. Sachse, K. Longbottom, D. Thomson, N. R. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title | European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title_full | European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title_fullStr | European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title_full_unstemmed | European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title_short | European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
title_sort | european chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415952/ https://www.ncbi.nlm.nih.gov/pubmed/28472926 http://dx.doi.org/10.1186/s12864-017-3657-y |
work_keys_str_mv | AT sethsmithhmb europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT busoleonorsanchez europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT livingstonem europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT saitm europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT harrissr europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT aitchisonkd europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT vretouevangelia europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT siarkouvi europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT laroucauk europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT sachsek europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT longbottomd europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures AT thomsonnr europeanchlamydiaabortuslivestockisolategenomesrevealunusualstabilityandlimiteddiversityreflectedingeographicalsignatures |