Cargando…
Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD
To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder (PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions between biological and environmen...
Autores principales: | Galatzer-Levy, I R, Ma, S, Statnikov, A, Yehuda, R, Shalev, A Y |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416681/ https://www.ncbi.nlm.nih.gov/pubmed/28323285 http://dx.doi.org/10.1038/tp.2017.38 |
Ejemplares similares
-
Bridging a translational gap: using machine learning to improve the prediction of PTSD
por: Karstoft, Karen-Inge, et al.
Publicado: (2015) -
Utilization of machine learning to test the impact of cognitive processing and emotion recognition on the development of PTSD following trauma exposure
por: Augsburger, Mareike, et al.
Publicado: (2020) -
Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)
por: Galatzer-Levy, Isaac R., et al.
Publicado: (2013) -
Correction: Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)
por: Galatzer-Levy, Isaac R., et al.
Publicado: (2013) -
Cortisol response to traumatic stress to predict PTSD symptom development – a systematic review and meta-analysis of experimental studies
por: Engel, Sinha, et al.
Publicado: (2023)