Cargando…
Ataxin-3 promotes genome integrity by stabilizing Chk1
The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416811/ https://www.ncbi.nlm.nih.gov/pubmed/28180282 http://dx.doi.org/10.1093/nar/gkx095 |
_version_ | 1783233824931446784 |
---|---|
author | Tu, Yingfeng Liu, Hongmei Zhu, Xuefei Shen, Hongyan Ma, Xiaolu Wang, Fengli Huang, Min Gong, Juanjuan Li, Xiaoling Wang, Yun Guo, Caixia Tang, Tie-Shan |
author_facet | Tu, Yingfeng Liu, Hongmei Zhu, Xuefei Shen, Hongyan Ma, Xiaolu Wang, Fengli Huang, Min Gong, Juanjuan Li, Xiaoling Wang, Yun Guo, Caixia Tang, Tie-Shan |
author_sort | Tu, Yingfeng |
collection | PubMed |
description | The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance. |
format | Online Article Text |
id | pubmed-5416811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-54168112017-05-05 Ataxin-3 promotes genome integrity by stabilizing Chk1 Tu, Yingfeng Liu, Hongmei Zhu, Xuefei Shen, Hongyan Ma, Xiaolu Wang, Fengli Huang, Min Gong, Juanjuan Li, Xiaoling Wang, Yun Guo, Caixia Tang, Tie-Shan Nucleic Acids Res Genome Integrity, Repair and Replication The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance. Oxford University Press 2017-05-05 2017-02-09 /pmc/articles/PMC5416811/ /pubmed/28180282 http://dx.doi.org/10.1093/nar/gkx095 Text en © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Genome Integrity, Repair and Replication Tu, Yingfeng Liu, Hongmei Zhu, Xuefei Shen, Hongyan Ma, Xiaolu Wang, Fengli Huang, Min Gong, Juanjuan Li, Xiaoling Wang, Yun Guo, Caixia Tang, Tie-Shan Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title | Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title_full | Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title_fullStr | Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title_full_unstemmed | Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title_short | Ataxin-3 promotes genome integrity by stabilizing Chk1 |
title_sort | ataxin-3 promotes genome integrity by stabilizing chk1 |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416811/ https://www.ncbi.nlm.nih.gov/pubmed/28180282 http://dx.doi.org/10.1093/nar/gkx095 |
work_keys_str_mv | AT tuyingfeng ataxin3promotesgenomeintegritybystabilizingchk1 AT liuhongmei ataxin3promotesgenomeintegritybystabilizingchk1 AT zhuxuefei ataxin3promotesgenomeintegritybystabilizingchk1 AT shenhongyan ataxin3promotesgenomeintegritybystabilizingchk1 AT maxiaolu ataxin3promotesgenomeintegritybystabilizingchk1 AT wangfengli ataxin3promotesgenomeintegritybystabilizingchk1 AT huangmin ataxin3promotesgenomeintegritybystabilizingchk1 AT gongjuanjuan ataxin3promotesgenomeintegritybystabilizingchk1 AT lixiaoling ataxin3promotesgenomeintegritybystabilizingchk1 AT wangyun ataxin3promotesgenomeintegritybystabilizingchk1 AT guocaixia ataxin3promotesgenomeintegritybystabilizingchk1 AT tangtieshan ataxin3promotesgenomeintegritybystabilizingchk1 |