Cargando…

Prediction of ultra-potent shRNAs with a sequential classification algorithm

We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel datasets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone,...

Descripción completa

Detalles Bibliográficos
Autores principales: Pelossof, Raphael, Fairchild, Lauren, Huang, Chun-Hao, Widmer, Christian, Sreedharan, Vipin T., Sinha, Nishi, Lai, Dan-Yu, Guan, Yuanzhe, Premsrirut, Prem K., Tschaharganeh, Darjus F., Hoffmann, Thomas, Thapar, Vishal, Xiang, Qing, Garippa, Ralph J., Rätsch, Gunnar, Zuber, Johannes, Lowe, Scott W., Leslie, Christina S., Fellmann, Christof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5416823/
https://www.ncbi.nlm.nih.gov/pubmed/28263295
http://dx.doi.org/10.1038/nbt.3807
Descripción
Sumario:We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel datasets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.