Cargando…
Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds
[Image: see text] Support vector machine (SVM) modeling is one of the most popular machine learning approaches in chemoinformatics and drug design. The influence of training set composition and size on predictions currently is an underinvestigated issue in SVM modeling. In this study, we have derive...
Autores principales: | Rodríguez-Pérez, Raquel, Vogt, Martin, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417594/ https://www.ncbi.nlm.nih.gov/pubmed/28376613 http://dx.doi.org/10.1021/acs.jcim.7b00088 |
Ejemplares similares
-
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2022) -
Prediction of Compound Profiling Matrices, Part II:
Relative Performance of Multitask Deep Learning and Random Forest
Classification on the Basis of Varying Amounts of Training Data
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2018) -
Prediction of Compound Profiling Matrices Using Machine Learning
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2018) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020)