Cargando…
How regularity representations of short sound patterns that are based on relative or absolute pitch information establish over time: An EEG study
The recognition of sound patterns in speech or music (e.g., a melody that is played in different keys) requires knowledge about pitch relations between successive sounds. We investigated the formation of regularity representations for sound patterns in an event-related potential (ERP) study. A patte...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417614/ https://www.ncbi.nlm.nih.gov/pubmed/28472146 http://dx.doi.org/10.1371/journal.pone.0176981 |
Sumario: | The recognition of sound patterns in speech or music (e.g., a melody that is played in different keys) requires knowledge about pitch relations between successive sounds. We investigated the formation of regularity representations for sound patterns in an event-related potential (ERP) study. A pattern, which consisted of six concatenated 50 ms tone segments differing in fundamental frequency, was presented 1, 2, 3, 6, or 12 times and then replaced by another pattern by randomly changing the pitch of the tonal segments (roving standard paradigm). In an absolute repetition condition, patterns were repeated identically, whereas in a transposed condition, only the pitch relations of the tonal segments of the patterns were repeated, while the entire patterns were shifted up or down in pitch. During ERP measurement participants were not informed about the pattern repetition rule, but were instructed to discriminate rarely occurring targets of lower or higher sound intensity. EPRs for pattern changes (mismatch negativity, MMN; and P3a) and for pattern repetitions (repetition positivity, RP) revealed that the auditory system is able to rapidly extract regularities from unfamiliar complex sound patterns even when absolute pitch varies. Yet, enhanced RP and P3a amplitudes, and improved behavioral performance measured in a post-hoc test, in the absolute as compared with the transposed condition suggest that it is more difficult to encode patterns without absolute pitch information. This is explained by dissociable processing of standards and deviants as well as a back propagation mechanism to early sensory processing stages, which is effective after less repetitions of a standard stimulus for absolute pitch. |
---|