Cargando…

Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism

It has been proposed that malto-oligosaccharides (MOSs) are possibly recycled back into amylopectin biosynthesis via the sequential reactions catalyzed by plastidial α-glucan phosphorylase 1 (Pho1) and disproportionating enzyme 1 (Dpe1). In the present study, the reciprocal co-immunoprecipitation ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yi-Chen, Chang, Shih-Chung, Juang, Rong-Huay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417683/
https://www.ncbi.nlm.nih.gov/pubmed/28472155
http://dx.doi.org/10.1371/journal.pone.0177115
Descripción
Sumario:It has been proposed that malto-oligosaccharides (MOSs) are possibly recycled back into amylopectin biosynthesis via the sequential reactions catalyzed by plastidial α-glucan phosphorylase 1 (Pho1) and disproportionating enzyme 1 (Dpe1). In the present study, the reciprocal co-immunoprecipitation experiments using specific antibodies against Pho1 and Dpe1 demonstrated that these two enzymes can form a complex (the PD complex) in Ipomoea batatas storage roots. The immunohistochemistry analyses also revealed the co-localization of Pho1 and Dpe1 in the amyloplasts, and the protein levels of Pho1 and Dpe1 increased gradually throughout sweet potato storage root development. A high molecular weight PD complex was co-purified from sweet potato storage root lysates by size exclusion chromatography. Enzyme kinetic analyses showed that the PD complex can catalyze maltotriose and maltotetraose to generate glucose-1-phosphate in the presence of inorganic phosphate, and it also performs greater Dpe1 activity toward MOSs than does free form Dpe1. These data suggest that Pho1 and Dpe1 may form a metabolon complex, which provides elevated metabolic fluxes for MOS metabolism via a direct transfer of sugar intermediates, resulting in recycling of glucosyl units back into amylopectin biosynthesis more efficiently.