Cargando…

Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance

BACKGROUND: Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mea...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Jinfeng, Ciais, Philippe, Viovy, Nicolas, Soussana, Jean-François, Klumpp, Katja, Sultan, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418182/
https://www.ncbi.nlm.nih.gov/pubmed/28474332
http://dx.doi.org/10.1186/s13021-017-0079-8
Descripción
Sumario:BACKGROUND: Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071–2100 is predicted to be 1–5.5 °C higher than that for 1971–2000. Climate change and elevated CO(2) concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change. RESULTS: Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO(2). The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C. CONCLUSIONS: This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance. The simulated productivity increase in response to future global change enables an intensification of grassland management over Europe. However, the simulated increase in the interannual variability of grassland productivity over some regions may reduce the farmers’ ability to take advantage of the increased long-term mean productivity in the face of more frequent, and more severe drops of productivity in the future. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13021-017-0079-8) contains supplementary material, which is available to authorized users.