Cargando…
Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2
The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, am...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418354/ https://www.ncbi.nlm.nih.gov/pubmed/28529516 http://dx.doi.org/10.3389/fpls.2017.00680 |
_version_ | 1783234045887381504 |
---|---|
author | Castañeda-Ojeda, María Pilar Moreno-Pérez, Alba Ramos, Cayo López-Solanilla, Emilia |
author_facet | Castañeda-Ojeda, María Pilar Moreno-Pérez, Alba Ramos, Cayo López-Solanilla, Emilia |
author_sort | Castañeda-Ojeda, María Pilar |
collection | PubMed |
description | The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. |
format | Online Article Text |
id | pubmed-5418354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54183542017-05-19 Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 Castañeda-Ojeda, María Pilar Moreno-Pérez, Alba Ramos, Cayo López-Solanilla, Emilia Front Plant Sci Plant Science The effector repertoire of the olive pathogen P. savastanoi pv. savastanoi NCPPB 3335 includes two members of the HopAO effector family, one of the most diverse T3E families of the P. syringae complex. The study described here explores the phylogeny of these dissimilar members, HopAO1 and HopAO2, among the complex and reveals their activities as immune defense suppressors. Although HopAO1 is predominantly encoded by phylogroup 3 strains isolated from woody organs of woody hosts, both HopAO1 and HopAO2 are phylogenetically clustered according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of the HopAO family across the P. syringae complex. HopAO1 and HopAO2 translocate into plant cells and show hrpL-dependent expression, which allows their classification as actively deployed type III effectors. Our data also show that HopAO1 and HopAO2 possess phosphatase activity, a hallmark of the members of this family. Both of them exert an inhibitory effect on early plant defense responses, such as ROS production and callose deposition, and are able to suppress ETI responses induced by the effectorless polymutant of P. syringae pv. tomato DC3000 (DC3000D28E) in Nicotiana. Moreover, we demonstrate that a ΔhopAO1 mutant of P. savastanoi NCPBB 3335 exhibits a reduced fitness and virulence in olive plants, which supports the relevance of this effector during the interaction of this strain with its host plants. This work contributes to the field with the first report regarding functional analysis of HopAO homologs encoded by P. syringae or P. savastanoi strains isolated from woody hosts. Frontiers Media S.A. 2017-05-05 /pmc/articles/PMC5418354/ /pubmed/28529516 http://dx.doi.org/10.3389/fpls.2017.00680 Text en Copyright © 2017 Castañeda-Ojeda, Moreno-Pérez, Ramos and López-Solanilla. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Castañeda-Ojeda, María Pilar Moreno-Pérez, Alba Ramos, Cayo López-Solanilla, Emilia Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title | Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title_full | Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title_fullStr | Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title_full_unstemmed | Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title_short | Suppression of Plant Immune Responses by the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 Type III Effector Tyrosine Phosphatases HopAO1 and HopAO2 |
title_sort | suppression of plant immune responses by the pseudomonas savastanoi pv. savastanoi ncppb 3335 type iii effector tyrosine phosphatases hopao1 and hopao2 |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418354/ https://www.ncbi.nlm.nih.gov/pubmed/28529516 http://dx.doi.org/10.3389/fpls.2017.00680 |
work_keys_str_mv | AT castanedaojedamariapilar suppressionofplantimmuneresponsesbythepseudomonassavastanoipvsavastanoincppb3335typeiiieffectortyrosinephosphataseshopao1andhopao2 AT morenoperezalba suppressionofplantimmuneresponsesbythepseudomonassavastanoipvsavastanoincppb3335typeiiieffectortyrosinephosphataseshopao1andhopao2 AT ramoscayo suppressionofplantimmuneresponsesbythepseudomonassavastanoipvsavastanoincppb3335typeiiieffectortyrosinephosphataseshopao1andhopao2 AT lopezsolanillaemilia suppressionofplantimmuneresponsesbythepseudomonassavastanoipvsavastanoincppb3335typeiiieffectortyrosinephosphataseshopao1andhopao2 |